№2. Высота правильной четырехугольной пирамиды равна 12 см, а апофема – 15 см. Вычислить площадь боковой поверхности пирамиды.
Апофема – высота боковой грани правильной пирамиды, следовательно, QH⊥CD. По т. о 3-х перпендикулярах ОН⊥CD.
По т.Пифагора ОН=9 ( можно обойтись без вычислений, т.к. ∆ QOH- египетский, где отношение катет:гипотенуза=4:5).
ОН - половина АD, ⇒АD=2OH=18 (см)
Площадь боковой поверхности правильной пирамиды равна произведению апофемы на полупериметр основания.
S=15•18•4:2=540 см².
————————
№3. Условие неполное.
Объем V правильной треугольной пирамиды равен одной трети произведения площади правильного треугольника, являющегося основанием S (ABC), на высоту h (OS)
Формула площади основания S=a²√3/2. Зная высоту, несложно вычислить объём данной пирамиды.
———————
№4.
Сторона основания правильной треугольной пирамиды равна 8 см, а боковая грань наклонена к плоскости основания под углом 30°. Найти площадь полной поверхности пирамиды.
S(бок)=3•MH•AB:2=3•8/3•8:2=32
————————
№5
Основание пирамиды – треугольник со сторонами 13 см, 14 см, 15 см. Найти площадь сечения, которое проходит параллельно плоскости основания и делит высоту пирамиды в отношении 1:2, считая от вершины пирамиды.
————————
№6.
Найти объём правильной четырехугольной пирамиды, сторона основания которой равна 6 см, а диагональное сечение является равносторонним треугольником.
№1. Сторона правильной четырехугольной пирамиды равна а, а диагональное сечение - равносторонний треугольник. Найти объем пирамиды.
Пирамида QABCD, QO - высота, АQC- диагональное сечение, АВ=а.
V=S•h:3
S=a²
h=AC√3/2
AC=a:sin45°=a√2
h=a√6/2
V=a³√6/6
№2. Высота правильной четырехугольной пирамиды равна 12 см, а апофема – 15 см. Вычислить площадь боковой поверхности пирамиды.
Апофема – высота боковой грани правильной пирамиды, следовательно, QH⊥CD. По т. о 3-х перпендикулярах ОН⊥CD.
По т.Пифагора ОН=9 ( можно обойтись без вычислений, т.к. ∆ QOH- египетский, где отношение катет:гипотенуза=4:5).
ОН - половина АD, ⇒АD=2OH=18 (см)
Площадь боковой поверхности правильной пирамиды равна произведению апофемы на полупериметр основания.
S=15•18•4:2=540 см².
————————
№3. Условие неполное.
Объем V правильной треугольной пирамиды равен одной трети произведения площади правильного треугольника, являющегося основанием S (ABC), на высоту h (OS)
Формула площади основания S=a²√3/2. Зная высоту, несложно вычислить объём данной пирамиды.
———————
№4.
Сторона основания правильной треугольной пирамиды равна 8 см, а боковая грань наклонена к плоскости основания под углом 30°. Найти площадь полной поверхности пирамиды.
S(бок)=3•MH•AB:2=3•8/3•8:2=32
————————
№5
Основание пирамиды – треугольник со сторонами 13 см, 14 см, 15 см. Найти площадь сечения, которое проходит параллельно плоскости основания и делит высоту пирамиды в отношении 1:2, считая от вершины пирамиды.
————————
№6.
Найти объём правильной четырехугольной пирамиды, сторона основания которой равна 6 см, а диагональное сечение является равносторонним треугольником.
———————
Решения задач 4,5,6 даны в приложениях.
Объяснение:
1.
М - середина АВ, значит МВ = АВ/2
Р - середина МВ, значит РВ = МВ/2 = АВ/4
К - середина ВС, значит КС = ВС/2
Е - середина КС, значит ЕС = КС/2 = ВС/4
N - середина АС, значит NA = АС/2
G - середина NA, значит GA = NA/2 = AC/4
По условию
PB + EC + GA = 12
АВ/4 + ВС/4 + АС/4 = 12
1/4 · (АВ + ВС + АС) = 12
АВ + ВС + АС = 12 · 4 = 48 (см)
2.
Из решения первой задачи следует, что
АР = 3/4 АВ
ВЕ = 3/4 ВС
CG = 3/4 AC
По условию
AP + BE + CG = 108
3/4 АВ + 3/4 ВС + 3/4 АС = 108
3/4 · (АВ + ВС + АС) = 108
АВ + ВС + АС = 108 · 4/3 = 144 (см)