проведите прямую обозначьте ее буквой а на прямой а отметьте точки A B и C отметье точки D не лежащую на прямой а лежат ли точки B и D на прямой AC объясните ответ
ВС: (х - 2)/(-4) = (у - 4)/(-6). Общий вид: 3х -2у + 2 = 0.
АС: (х + 2)/0 = (у - 1)/(-3). Это линия х = -2.
2) Точка М: х(М) = (-2+2-2)/3 = -2/3,
у(М) = (1+4-2)/3 = 1. Точка М((-2/3); 1).
3) Находим уравнение высоты АД из условия А1А2 + В1В2 = 0.
АД: 2х + 3у + С = 0. Подставим координаты точки А:
2*(-2) + 3*1 + С = 0, отсюда С = 4 - 3 = 1.
АД: 2х + 3у + 1 = 0.
Если задано уравнение прямой ВС: Ax + By + C = 0, то расстояние от точки А(Аx, Аy) до прямой ВС можно найти, используя следующую формулу : d = |A·Аx + B·Аy + C| . А(-2; 1).
√(A² + B²) ВС: 3х -2у + 2 = 0.
Подставим данные: d = |3·(-2) + (-2)·1+ 2| =
√(3² + (-2)²)
= |-6 - 2 + 2|/√13 = 6/√13 ≈ 1,664.
4) Так как одна сторона треугольника вертикальна и равна 3, то высота равна разности координат точек по оси Ох, то есть 2 - (-2) = 4.
В равнобедренной трапеции диагональ является биссектрисой острого угла . Основание трапеции относится к боковой стороне как 8:5 Периметр трапеции равен 69 см найти стороны трапеции.
Объяснение:
АВСД-трапеция, АВ=СД , АД:АВ=8:5 , Р=69 см.
Тк. ВС║АД , АС-секущая , то ∠САД=∠АСД как накрест лежащие .
Тогда ΔАВС-равнобедренный по признаку ⇒АВ=ВС= 5 частей.
Поэтому СД=5 частей. Т.к. АД:АВ=8:5 , то АД= *АВ.
Пусть одна часть равна х см , тогда АВ=ВС=СД=5х , АД= *5х=8х .
Даны вершины треугольника А(-2; 1), В(2; 4), С((-2;-2).
1) Векторы АВ = (4; 3), ВС = (-4; -6), АС = (0; -3).
Уравнения (канонические):
АВ: (х + 2)/4 = (у - 1)/3.
ВС: (х - 2)/(-4) = (у - 4)/(-6). Общий вид: 3х -2у + 2 = 0.
АС: (х + 2)/0 = (у - 1)/(-3). Это линия х = -2.
2) Точка М: х(М) = (-2+2-2)/3 = -2/3,
у(М) = (1+4-2)/3 = 1. Точка М((-2/3); 1).
3) Находим уравнение высоты АД из условия А1А2 + В1В2 = 0.
АД: 2х + 3у + С = 0. Подставим координаты точки А:
2*(-2) + 3*1 + С = 0, отсюда С = 4 - 3 = 1.
АД: 2х + 3у + 1 = 0.
Если задано уравнение прямой ВС: Ax + By + C = 0, то расстояние от точки А(Аx, Аy) до прямой ВС можно найти, используя следующую формулу : d = |A·Аx + B·Аy + C| . А(-2; 1).
√(A² + B²) ВС: 3х -2у + 2 = 0.
Подставим данные: d = |3·(-2) + (-2)·1+ 2| =
√(3² + (-2)²)
= |-6 - 2 + 2|/√13 = 6/√13 ≈ 1,664.
4) Так как одна сторона треугольника вертикальна и равна 3, то высота равна разности координат точек по оси Ох, то есть 2 - (-2) = 4.
ответ: S = (1/2)*3*4 = 6.
В равнобедренной трапеции диагональ является биссектрисой острого угла . Основание трапеции относится к боковой стороне как 8:5 Периметр трапеции равен 69 см найти стороны трапеции.
Объяснение:
АВСД-трапеция, АВ=СД , АД:АВ=8:5 , Р=69 см.
Тк. ВС║АД , АС-секущая , то ∠САД=∠АСД как накрест лежащие .
Тогда ΔАВС-равнобедренный по признаку ⇒АВ=ВС= 5 частей.
Поэтому СД=5 частей. Т.к. АД:АВ=8:5 , то АД= *АВ.
Пусть одна часть равна х см , тогда АВ=ВС=СД=5х , АД= *5х=8х .
Р=АВ+ВС+СД+АД , 69=5х+5х+5х+8х , х= 3 см .
АВ=ВС=СД=15 см , АД= 8см