Высота, проведенная из тупого угла трапеции к большему основанию, отсекает прямоугольный треугольник. Так как в прямоугольном треугольнике один из углов равен 90°, острый угол трапеции по условию 60°, то третий угол: 180° - 90° - 60° = 30°
По условию задачи боковая сторона трапеции, которая является гипотенузой данного прямоугольного треугольника равна 10 см. Катет, лежащий против угла 30° равен половине гипотенузы:
10/2 = 5 см.
Большее основание трапеции по условию 30 см, тогда меньшее
30 - 5 - 5 = 20 см
Длина средней линии трапеции равна полусумме длин оснований:
Через две точки можно провести прямую линию и притом только одну.
Аксиома 2
Если две точки прямой принадлежат плоскости, то и каждая точка этой прямой принадлежит плоскости.
Аксиома 3
Отрезок прямой короче всякой другой линии (ломаной или кривой), соединяющей его концы.
Расстояние между двумя точками измеряется по прямой линии. В геометрии используются еще и такие аксиомы, которые уже применялись в арифметике и алгебре (сформулируем их для произвольных величин A, B и C):
Высота, проведенная из тупого угла трапеции к большему основанию, отсекает прямоугольный треугольник. Так как в прямоугольном треугольнике один из углов равен 90°, острый угол трапеции по условию 60°, то третий угол: 180° - 90° - 60° = 30°
По условию задачи боковая сторона трапеции, которая является гипотенузой данного прямоугольного треугольника равна 10 см. Катет, лежащий против угла 30° равен половине гипотенузы:
10/2 = 5 см.
Большее основание трапеции по условию 30 см, тогда меньшее
30 - 5 - 5 = 20 см
Длина средней линии трапеции равна полусумме длин оснований:
(30+20)/2 = 25 см.
ответ: 25 см
Аксиома 1
Через две точки можно провести прямую линию и притом только одну.
Аксиома 2
Если две точки прямой принадлежат плоскости, то и каждая точка этой прямой принадлежит плоскости.
Аксиома 3
Отрезок прямой короче всякой другой линии (ломаной или кривой), соединяющей его концы.
Расстояние между двумя точками измеряется по прямой линии. В геометрии используются еще и такие аксиомы, которые уже применялись в арифметике и алгебре (сформулируем их для произвольных величин A, B и C):
Аксиома 4
Если A=B и B=C, то A=C.
Аксиома 5
Если A=B, то A+C=B+C и A-C=B-C.
Объяснение:
здесь ответы