Если провести через точку A прямую параллельно BC, то она пересечет BD в точке K таким образом, что AK = AB. Это потому, что ∠AKB = ∠DBC; это - внутренние накрест лежащие углы; а ∠DBC = ∠ABD; так как BD - биссектриса получилось, что треугольник AKB - равнобедренный. Теперь понятно, что для того, чтобы прямая AD пересекла BС в точке C за точкой D, то есть чтобы существовал треугольник ABC, нужно, чтобы точка D лежала ближе к B, чем K. Отсюда ∠ADB > ∠AKB = ∠ABD; и AB > AD; так как напротив большего угла в треугольнике лежит большая сторона.
Это прямоугольные треугольники, т.к. углы ∠КSO=∠KPO=90° (как углы между касательной к окружности и радиусом, проведенным в точку касания - по определению касательной). У этих прямоугольных треугольников равны гипотенузы (они просто совпадают. Это - отрезок ОК), и один из катетов (как радиусы окружности r). Следовательно по условию соответственного равенства гипотенузы и одного из катетов, прямоугольные треугольники равны:
Δ KOS ≡ Δ KOP
У равных треугольников соответствующие углы равны. Следовательно:
∠SKO = ∠PKO следовательно отрезок KO - бисектрисса ∠SKP .
Значит ∠SKO = ∠PKO=60/2=30°.
У прямоугольного треугольника катет, лежащий против угла 30° равен полвине гипотенузы (KO). Против угла ∠SKO (или ∠PKO) лежит катет, равный радиусу окружности r, значит:
∠AKB = ∠DBC; это - внутренние накрест лежащие углы; а
∠DBC = ∠ABD; так как BD - биссектриса
получилось, что треугольник AKB - равнобедренный.
Теперь понятно, что для того, чтобы прямая AD пересекла BС в точке C за точкой D, то есть чтобы существовал треугольник ABC, нужно, чтобы точка D лежала ближе к B, чем K.
Отсюда ∠ADB > ∠AKB = ∠ABD; и AB > AD; так как напротив большего угла в треугольнике лежит большая сторона.
l r l=6.5 (см)
Объяснение:
Смотрим чертеж:
Это прямоугольные треугольники, т.к. углы ∠КSO=∠KPO=90° (как углы между касательной к окружности и радиусом, проведенным в точку касания - по определению касательной). У этих прямоугольных треугольников равны гипотенузы (они просто совпадают. Это - отрезок ОК), и один из катетов (как радиусы окружности r). Следовательно по условию соответственного равенства гипотенузы и одного из катетов, прямоугольные треугольники равны:
Δ KOS ≡ Δ KOP
У равных треугольников соответствующие углы равны. Следовательно:
∠SKO = ∠PKO следовательно отрезок KO - бисектрисса ∠SKP .
Значит ∠SKO = ∠PKO=60/2=30°.
У прямоугольного треугольника катет, лежащий против угла 30° равен полвине гипотенузы (KO). Против угла ∠SKO (или ∠PKO) лежит катет, равный радиусу окружности r, значит:
l r l=l KO l/2
l r l=13/2=6.5 (см)