Пряма а паралельна прямій б. З деякои прямои a до площини б проведено похилу МК задовжки 13 см. Проекция якои KN = 12 см. Яка видстань вид прямои а до площини б?
Дана параллельная проекция равнобедренной трапеции АВСD на плоскости р. Из основных инвариантных свойств параллельного проецирования имеем: "Проекции взаимно параллельных прямых также взаимно параллельны, а отношение отрезков таких прямых равно отношению их параллельных проекций". Отсюда ясно, что проекцией отрезка, соединяющего середины параллельных оснований исходной трапеции будет отрезок, соединяющий середины проекций этих оснований. Делим отрезки АD и ВС пополам и соединяем полученные середины М и N. Мы знаем, что в равнобедренной трапеции отрезок, соединяющий середины оснований перпендикулярен этим основаниям. А высота из вершины тупого угла трапеции параллельна этому отрезку. Таким образом, проведя прямую из точки В (проекция вершины тупого угла трапеции) параллельно прямой MN, получим искомое изображение высоты из тупого угла на большее основание.
1) рассмотрим треугольник KSM и треугольник NSL: a) угол KSM = углу NSL - вертикальные; б) KS = SL, т. к. S - середина КL в) MS = SN, т. к. S - середина MN => треугольник KSM = треугольнику NSL по двум сторонам и углу между ними 2) т. к треугольник KSM = треугольнику SNL, угол KSM = углу NSL, то KM = LN (аналогично с другиси сторонами) 3) рассмотрим трeугольники KSN и MSL: a) углы KSN и MSL равны, т. к. вертикальные б) KS = SL т. к. S - середина KL в) MS = SN, т. к. S - середина MN => треугольники KSN и MSL равны 4) т. к. треугольники KSN и MSL равны, углы KSN и MSL равны, то КN = МL
Мы знаем, что в равнобедренной трапеции отрезок, соединяющий середины оснований перпендикулярен этим основаниям. А высота из вершины тупого угла трапеции параллельна этому отрезку. Таким образом, проведя прямую из точки В (проекция вершины тупого угла трапеции) параллельно прямой MN, получим искомое изображение высоты из тупого угла на большее основание.
a) угол KSM = углу NSL - вертикальные;
б) KS = SL, т. к. S - середина КL
в) MS = SN, т. к. S - середина MN
=> треугольник KSM = треугольнику NSL по двум сторонам и углу между ними
2) т. к треугольник KSM = треугольнику SNL, угол KSM = углу NSL, то KM = LN
(аналогично с другиси сторонами)
3) рассмотрим трeугольники KSN и MSL:
a) углы KSN и MSL равны, т. к. вертикальные
б) KS = SL т. к. S - середина KL
в) MS = SN, т. к. S - середина MN
=> треугольники KSN и MSL равны
4) т. к. треугольники KSN и MSL равны, углы KSN и MSL равны, то КN = МL