В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
nauryzbekova
nauryzbekova
09.05.2022 13:02 •  Геометрия

Радиус окружности,описанной около квадрата,равен 5√2 см.найти сторону квадрата и радиус вписанной окружности.

Показать ответ
Ответ:
PavelSahka
PavelSahka
23.01.2024 17:23
Добрый день! Давайте решим эту задачу.

Для начала, давайте вспомним, что радиус окружности - это расстояние от центра окружности до любой ее точки. В данной задаче нам дан радиус окружности, описанной вокруг квадрата, и он равен 5√2 см.

Так как окружность описана вокруг квадрата, то мы можем нарисовать радиусы окружности (лучи, исходящие из центра окружности к ее точкам) и провести прямые через эти точки перпендикулярно сторонам квадрата. Получится квадрат со стороной, равной дважды радиусу окружности.

Итак, если радиус окружности равен 5√2 см, то сторона квадрата будет 2 * 5√2 см = 10√2 см.

Теперь перейдем ко второй части задачи - найти радиус вписанной окружности.

Вписанная окружность - это окружность, которая касается каждой стороны квадрата в одной точке. Давайте нарисуем квадрат и вписанную окружность:

(рисунок с квадратом и вписанной окружностью)

Мы должны найти радиус вписанной окружности. Обозначим радиус вписанной окружности как r.

Воспользуемся свойством вписанной окружности: радиус вписанной окружности перпендикулярен касательной, проведенной в точке касания.

(рисунок с квадратом, вписанной окружностью, радиусом и касательной)

Мы видим, что радиус вписанной окружности r и сторона квадрата 10√2 образуют прямоугольный треугольник. Поэтому мы можем воспользоваться теоремой Пифагора, чтобы найти радиус вписанной окружности.

Теорема Пифагора гласит, что квадрат гипотенузы равен сумме квадратов катетов в прямоугольном треугольнике.

В нашем случае, гипотенуза это р, один катет - радиус окружности, описывающей квадрат (5√2), а другой катет - половина стороны квадрата (5√2 / 2).

По применению теоремы Пифагора получаем:

r^2 = (5√2)^2 - (5√2 / 2)^2
r^2 = 50 - 25/2
r^2 = 75/2

Чтобы выразить r через одну величину, возьмем квадратный корень из обеих сторон уравнения:

r = √(75/2)
r = √(75) / √(2)
r = √(25 * 3) / √(2)
r = 5√3 / √2
r = (5√3 * √2) / √2 * √2
r = 5√6 / 2

Итак, радиус вписанной окружности равен 5√6 / 2 см.

Таким образом, сторона квадрата равна 10√2 см, а радиус вписанной окружности равен 5√6 / 2 см.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота