Расстояние от точки до прямой - длина перпендикуляра, опущенного из точки на прямую. Отрезок FB перпендикулярен плоскости квадрата AВСD, значит перпендикулярен прямым АВ, ВС и BD, лежащим в плоскости. Так как отрезок FB пересекает их, то расстояние до сторон АВ и ВС, а так же и до диагонали BD равно длине отрезка FB и равно 8 дм.
ВА⊥AD как стороны квадрата, ВА - проекция наклонной FA на плоскость АВС, значит FA⊥AD по теореме о трех перпендикулярах. Значит, FA - расстояние от точки F до прямой AD. Из ΔABF по теореме Пифагора: FA = √(AB² + FB²) = √(16 + 64) = √80 = 4√5 (дм)
ВС⊥CD как стороны квадрата, ВС - проекция наклонной FС на плоскость АВС, значит FС⊥СD по теореме о трех перпендикулярах. Значит, FС - расстояние от точки F до прямой СD. ΔАBF = ΔCBF по двум катетам (АВ = ВС как стороны квадрата, BF - общая), тогда FC = FA = 4√5 дм.
ВО⊥АС, так как диагонали квадрата перпендикулярны, ВО - проекция FO на плоскость АВС, значит FO⊥AC по теореме о трех перпендикулярах. FO - расстояние от точки F до прямой АС. ВО = BD/2 = 4√2/2 = 2√2 дм как диагональ квадрата, Из ΔFBO по теореме Пифагора: FO = √(FB² + BO²) = √(64 + 8) = √72 = 6√2 дм
Я люблю свой дом. Мне очень нравиться, когда появляется что-то новое. Я уже могу с геометрии определить, сколько краски надо, чтобы покрасить прямоугольный потолок, сколько рулонов обоев купить, чтобы хватило на стены в комнате,сколько метров ткани надо купить на новые шторы. Я знаю свойства геометрических фигур. Например. у прямоугольника противоположные стороны равны. Можно использовать это свойство, если захочу сделать перестановку. Можно посчитать, сколько времени надо, чтобы водой наполнилась ванна.
Отрезок FB перпендикулярен плоскости квадрата AВСD, значит перпендикулярен прямым АВ, ВС и BD, лежащим в плоскости. Так как отрезок FB пересекает их, то расстояние до сторон АВ и ВС, а так же и до диагонали BD равно длине отрезка FB и равно 8 дм.
ВА⊥AD как стороны квадрата,
ВА - проекция наклонной FA на плоскость АВС, значит
FA⊥AD по теореме о трех перпендикулярах.
Значит, FA - расстояние от точки F до прямой AD.
Из ΔABF по теореме Пифагора:
FA = √(AB² + FB²) = √(16 + 64) = √80 = 4√5 (дм)
ВС⊥CD как стороны квадрата,
ВС - проекция наклонной FС на плоскость АВС, значит
FС⊥СD по теореме о трех перпендикулярах.
Значит, FС - расстояние от точки F до прямой СD.
ΔАBF = ΔCBF по двум катетам (АВ = ВС как стороны квадрата, BF - общая), тогда
FC = FA = 4√5 дм.
ВО⊥АС, так как диагонали квадрата перпендикулярны,
ВО - проекция FO на плоскость АВС, значит
FO⊥AC по теореме о трех перпендикулярах.
FO - расстояние от точки F до прямой АС.
ВО = BD/2 = 4√2/2 = 2√2 дм как диагональ квадрата,
Из ΔFBO по теореме Пифагора:
FO = √(FB² + BO²) = √(64 + 8) = √72 = 6√2 дм
d(F ; AB) = d(F ; BC) = d (F ; BD) = 8 дм
d(F ; AD) = d(F ; CD) = 4√5 дм
d(F ; AC) = 6√2 дм