Расстояние от точки N до каждой из вершин правильного треугольника ABC равно 5см. Найдите расстояние от точки N до плоскости ABC, если АВ = 8см. Через пирамиду
Тогда площадь треугольника, равная 2, равна половине произведения катетов:
Однако для острого угла в прямоугольном треугольнике отношение прилежащего катета к гипотенузе - это косинус угла, а отношение противолежащего катета к гипотенузе - это синус угла
Соответственно, каждый из катетов можно выразить через синус и косинус одного из острых углов:
Т.к. с = 4, получаем:
Получаем ригонометрическое уравнение:
Т.к. мы ищем углы в прямоугольном треугольнике, то
Соответственно попадают в этот интервал только следующие полученные углы:
Итак, мы получили 2 пары углов:
Очевидно, что это одна и та же пара углов, в зависимости от того, какой катет мы брали за а, а какой за b.
ответ: 52,3м; 104,6м
Объяснение:
Сам монумент, расстояние от точки А до основания монумента и расстояние от точки А до самой высокой точки образуют прямоугольный треугольник.
Высота монумента является катетом, расстояние от основания до точки А вторым катетом, а расстояние от точки А до вершины монумента гипотенузой.
Для того чтобы найти расстояние от точки А до вершины, нужно выстоу монумента разделить на sin60° и получим:
91/0,87=104,6м
Для нахождения расстояния от основания монумета до точки А, нужно расстояние от точки А до самой высокой точки умножить на cos60°: 104,6*0,5=52,3м
или
15° и 75°
Объяснение:
Обозначим в прямоугольном треугольнике
катеты как a, b
гипотенузу как с (с = 4)
и углы как
Причем углы связаны формулой
Тогда площадь треугольника, равная 2, равна половине произведения катетов:
Однако для острого угла в прямоугольном треугольнике отношение прилежащего катета к гипотенузе - это косинус угла, а отношение противолежащего катета к гипотенузе - это синус угла
Соответственно, каждый из катетов можно выразить через синус и косинус одного из острых углов:
Т.к. с = 4, получаем:
Получаем ригонометрическое уравнение:
Т.к. мы ищем углы в прямоугольном треугольнике, то
Соответственно попадают в этот интервал только следующие полученные углы:
Итак, мы получили 2 пары углов:
Очевидно, что это одна и та же пара углов, в зависимости от того, какой катет мы брали за а, а какой за b.
Итак, получаем ответ: