Образующая AS, как катет равнобедренного прямоугольного треугольника ASВ c прямым углом при вершине S и с гипотенузой АВ=6√2, равна 6 см Высота SО, как катет прямоугольного треугольника ASО с прямым углом при основании высоты, равна половине АS, так как противолежит углу 30° h=AS:2=3 см Радиус r основания конуса найдем из треугольника АSO. Можно по теореме Пифагора или через косинус угла SАО. АО=r=АS·cos(30°)=6·√3):2=3√3 Объем конуса равен одной трети произведения площади основания на его высоту и находится по формуле: V= π r² H:3
Образующая AS, как катет равнобедренного прямоугольного треугольника ASВ c прямым углом при вершине S и с гипотенузой АВ=6√2, равна 6 см
Высота SО, как катет прямоугольного треугольника ASО с прямым углом при основании высоты, равна половине АS, так как противолежит углу 30°
h=AS:2=3 см
Радиус r основания конуса найдем из треугольника АSO. Можно по теореме Пифагора или через косинус угла SАО.
АО=r=АS·cos(30°)=6·√3):2=3√3
Объем конуса равен одной трети произведения площади основания на его высоту и находится по формуле:
V= π r² H:3
V==π 27·3 : 3=27π см³
Пусть АВСД - данная трапеция, ВС||АД, ВС=9 см, АД=21 см, ВК=8 см - высота.
Решение
1. Радиус описанного круга равен радиусу круга, описанного около ΔАВД.
2. Рассмотрим ΔАКВ - прямоугольный.
АК=(АД-ВС):2 = 6 см.
АВ²=АК² + ВК² - (по теореме Пифагора)
АВ²=36+64=100
АВ=10 см.
3. Рассмотрим ΔВКД - прямоугольный.
КД=АД-АК=21-6=15 (см)
ВД²=ВК² + КД² - (по теореме Пифагора)
ВД²=64+225=289
ВД=17 см.
4. Рассмотрим ΔАВД.
SΔ = ½ ah
SΔ = ½ · 21 · 8 = 84 (см²)
5. R=abc/4S
R=(21·10·17)/(4·84) = 3570/336 = 10,625 (см)