Я все думала, как объяснить. Попробую все же. У трапеции есть большее и меньшее основания, они параллельны, а боковая сторона трапеции - это секущая. Внутри образовывается два угла (внутренние односторонние). Из-за того, что трапеция равнобокая(равнобедренная), то в сумме они дают 180°, как и с другой стороны. Меньший угол берётся за х, а больший - за (х+30°). Составляется уравнение.(можно брать 360°, можно 180°). х+х+30=180 2х=150 х=75 Следовательно меньший угол = 75° Больший= 75°+30°=105° или 180°-75°=105°
1) Строим треугольник со стороной x (которая задана) и заданным углом.
Делаем это так: проводим произвольную прямую. Строим данный угол (пусть BAC (A-вершина)). На прямой, от вершины угла, откладываем отрезок x (AM). Очевидно, что расстояние от точки M до второй стороны угла меньше x. Выберем любую точку внутри отрезка AM. Из нее чертим окружность радиуса x. Требуемый треугольник построен
2) Рассмотрим построенный нами треугольник. Обозначим его за ABC. BC=x. Построим его описанную окружность. Построим окружность с центром в точке B и радиусом равным сумме двух сторон. Пересечение этой окружности (по ту же сторону что и точка A) назовем L. Тогда BCL - искомый
1) Строим треугольник со стороной x (которая задана) и заданным углом.
Делаем это так: проводим произвольную прямую. Строим данный угол (пусть BAC (A-вершина)). На прямой, от вершины угла, откладываем отрезок x (AM). Очевидно, что расстояние от точки M до второй стороны угла меньше x. Выберем любую точку внутри отрезка AM. Из нее чертим окружность радиуса x. Требуемый треугольник построен
2) Рассмотрим построенный нами треугольник. Обозначим его за ABC. BC=x. Построим его описанную окружность. Построим окружность с центром в точке B и радиусом равным сумме двух сторон. Пересечение этой окружности (по ту же сторону что и точка A) назовем L. Тогда BCL - искомый