0) Обозначим одну точку как H, это будет ортоцентр. А другую, как O, это будет центр описанной окружности.
Вспомним два свойства ортоцентра:
1. Точка, симметричная ортоцентру относительно прямой, содержащей сторону треугольника, лежит на описанной около треугольника окружности.
2. Точка, симметричная ортоцентру относительно середины стороны треугольника, лежит на описанной около треугольника окружности и диаметрально противоположна вершине треугольника, противолежащей данной стороне.
1) Построим точку H' симметричную H относительно прямой а. Для этого: проводим полуокружность с центром H и радиусом (p) большим, чем расстояние от H до прямой а. Из точек пересечения полуокружности с прямой, проводим окружности с радиусом (p). Они пересеклись в двух точках, одна H, другая H'.
По свойству ортоцентра (1.) H' лежит на описанной окружности.
2) Проведём окружность с центром в точке O и радиусом OH'. Это и есть описанная окружность. По условию, точки пересечения этой окружности с прямой a, будут вершинами треугольника. Обозначим эти вершины как A и B. Построим сторону AB.
3) Определим середину AB. Для этого: проводим окружности с центрами в точках A и B, с равными радиусами (r), которые больше, чем половина AB. Через точки пересечения этих двух окружностей проводим прямую q. Точку пересечения прямых q и а обозначим как M. Это и есть середина AB.
4) Построим последнюю вершину треугольника C. Проводим прямую k через точки M и H. Точку пересечения k с описанной окружностью обозначим, как H₁. По свойству ортоцентра (2.) точка H₁ диаметрально противоположная точке С. Проводим через точки H₁ и O прямую t, точку пересечения прямой t и окружности обозначим как С. Это и есть последняя вершина.
5) Построим стороны AC и BC треугольника ABC. Задание выполнено.
У нас есть теорема, что катет лежащий протий угла 30* , равен половине гипотенузы , значит BC=10:2=5 см
ответ: BC= 5см
2. Сумма углов треугольника 180*
Угол DCB = 180-45-90=45*
Значит треугольник BCD равнобедренный , CD=DB=8см
Угол С 90* , а угол DCB=45*, значит ACD тоже 45*
Значит CD- биссектриса , но она в то же время и высота , а значит это равнобедренный треугольник . Но в равнобедренном треугольнике высота=медиана =биссектриса. Если CD Медиана , то AD=DB .
DB=8см, значит AD тоже 8 см
АВ=8+8=16см
3.сумма внутренних углов треугольника 180*
угол EBC= 180-60-90=30*
Катет лежащий против угла 30* равен половине гипотенузы , а значит EB= 7*2=14 см ABC=180-30-90=60*
0) Обозначим одну точку как H, это будет ортоцентр. А другую, как O, это будет центр описанной окружности.
Вспомним два свойства ортоцентра:
1. Точка, симметричная ортоцентру относительно прямой, содержащей сторону треугольника, лежит на описанной около треугольника окружности.
2. Точка, симметричная ортоцентру относительно середины стороны треугольника, лежит на описанной около треугольника окружности и диаметрально противоположна вершине треугольника, противолежащей данной стороне.
1) Построим точку H' симметричную H относительно прямой а. Для этого: проводим полуокружность с центром H и радиусом (p) большим, чем расстояние от H до прямой а. Из точек пересечения полуокружности с прямой, проводим окружности с радиусом (p). Они пересеклись в двух точках, одна H, другая H'.
По свойству ортоцентра (1.) H' лежит на описанной окружности.
2) Проведём окружность с центром в точке O и радиусом OH'. Это и есть описанная окружность. По условию, точки пересечения этой окружности с прямой a, будут вершинами треугольника. Обозначим эти вершины как A и B. Построим сторону AB.
3) Определим середину AB. Для этого: проводим окружности с центрами в точках A и B, с равными радиусами (r), которые больше, чем половина AB. Через точки пересечения этих двух окружностей проводим прямую q. Точку пересечения прямых q и а обозначим как M. Это и есть середина AB.
4) Построим последнюю вершину треугольника C. Проводим прямую k через точки M и H. Точку пересечения k с описанной окружностью обозначим, как H₁. По свойству ортоцентра (2.) точка H₁ диаметрально противоположная точке С. Проводим через точки H₁ и O прямую t, точку пересечения прямой t и окружности обозначим как С. Это и есть последняя вершина.
5) Построим стороны AC и BC треугольника ABC. Задание выполнено.
1. Сумма внутренних углов треугольника 180
Угол BAC=180-90-60=30*
У нас есть теорема, что катет лежащий протий угла 30* , равен половине гипотенузы , значит BC=10:2=5 см
ответ: BC= 5см
2. Сумма углов треугольника 180*
Угол DCB = 180-45-90=45*
Значит треугольник BCD равнобедренный , CD=DB=8см
Угол С 90* , а угол DCB=45*, значит ACD тоже 45*
Значит CD- биссектриса , но она в то же время и высота , а значит это равнобедренный треугольник . Но в равнобедренном треугольнике высота=медиана =биссектриса. Если CD Медиана , то AD=DB .
DB=8см, значит AD тоже 8 см
АВ=8+8=16см
3.сумма внутренних углов треугольника 180*
угол EBC= 180-60-90=30*
Катет лежащий против угла 30* равен половине гипотенузы , а значит EB= 7*2=14 см ABC=180-30-90=60*
Угол ABE=ABC- EBC=60-30=30*
EAB=ABE=30* , значит ABE равнобедренный
Следовательно , AE=EB=14см
ответ : AE=14 см