Теорема о касательной и секущей: если из одной точки проведены к окружности касательная и секущая, то произведение всей секущей на её внешнюю часть равно квадрату касательной. То есть
ВС = ТС - ТВ = 40 - 10 = 30 Проведём перпендикуляр из точки О к отрезку секущей ВС и рассмотрим треугольник ВОС. Так как ВО = ОС = рудиусу, то треугольник равнобедренный, и значит, его высота ОК является его медианой, то есть ВК = КС = 30 / 2 = 15 Из прямоугольного треугольника ОКВ:
сумма углов треугольника равна 180, а напротив одинаковых сторон в треугольнике лежат равные углы. Так как углы равны и их 3, то 3х = 180, х=60
Или
если мы построим высоту из одного из углов, то высота поделит сторону пополам. Допустим сторона равна А, тогда у нас 2 треугольника со сторонами А, А/2 и еще одной. Мы знаем, что напротив угла в 30% в прямоугольном треугольнике лежит катет, равный 1/2 гипотенузы. А А/2 в 2 раза меньше чем А, соответсвенно угол равен 30. Из чего следует, что противоположный угол равен 60 (прямоуг. треуг.). Также и со вторым треуг. 2 угла по 60 градусов, значит последний тоже 60
То есть
ВС = ТС - ТВ = 40 - 10 = 30
Проведём перпендикуляр из точки О к отрезку секущей ВС и рассмотрим треугольник ВОС. Так как ВО = ОС = рудиусу, то треугольник равнобедренный, и значит, его высота ОК является его медианой, то есть ВК = КС = 30 / 2 = 15
Из прямоугольного треугольника ОКВ:
ответ: расстояние от центра до секущей равно 8 см
сумма углов треугольника равна 180, а напротив одинаковых сторон в треугольнике лежат равные углы. Так как углы равны и их 3, то 3х = 180, х=60
Или
если мы построим высоту из одного из углов, то высота поделит сторону пополам. Допустим сторона равна А, тогда у нас 2 треугольника со сторонами А, А/2 и еще одной. Мы знаем, что напротив угла в 30% в прямоугольном треугольнике лежит катет, равный 1/2 гипотенузы. А А/2 в 2 раза меньше чем А, соответсвенно угол равен 30. Из чего следует, что противоположный угол равен 60 (прямоуг. треуг.). Также и со вторым треуг. 2 угла по 60 градусов, значит последний тоже 60