Боковые грани этой призмы - параллелограммы. По условию общее ребро отстоит от других боковых ребер на 12 см и 35 см - это расстояние по нормали между ребрами, то есть это высоты параллелограммов. Площадь параллелограмма равна произведению высоты на основу (у нас ребро). Площадь боковой поверхности этой призмы будет равна произведению периметра прямоугольного треугольника (перпендикулярного к продольной оси призмы) на боковое ребро. В прямоугольном треугольнике (перпендикулярного к продольной оси призмы) осталось найти гипотенузу: она равна √(12²+35²) = √(144+1225) = √1369 = 37 см. Периметр равен 12+35+37 = 84 см. Отсюда Sбок = 84*24 = 2016 см².
По условию общее ребро отстоит от других боковых ребер на 12 см и 35 см - это расстояние по нормали между ребрами, то есть это высоты параллелограммов.
Площадь параллелограмма равна произведению высоты на основу (у нас ребро).
Площадь боковой поверхности этой призмы будет равна произведению периметра прямоугольного треугольника (перпендикулярного к продольной оси призмы) на боковое ребро.
В прямоугольном треугольнике (перпендикулярного к продольной оси призмы) осталось найти гипотенузу: она равна √(12²+35²) = √(144+1225) = √1369 = 37 см.
Периметр равен 12+35+37 = 84 см.
Отсюда Sбок = 84*24 = 2016 см².
1. Если треугольники подобны, то отношения сторон у них равны.
Пусть х - коэффициент пропорциональности.
Тогда стороны треугольника 2x, 5x, 4x.
Меньшая сторона 2х = 22, тогда
х = 11 см
Большая сторона равна 5х:
11 · 5 = 55 см
2. Площади подобных треугольников относятся как квадрат коэффициента подобия.
Если сходственные стороны относятся как 3 : 5, то
Sabc : Smnp = 9 : 25
Учитывая, что Smnp = Sabc + 16, получаем уравнение:
Sabc : (Sabc + 16) = 9 : 25
25·Sabc = 9·Sabc + 144
16·Sabc = 144
Sabc = 9 см²
3. Пусть х - сторона квадрата.
Из треугольника, образованного двумя сторонами квадрата и диагональю по теореме Пифагора:
x² + x² = 16²
2x² = 256
x² = 128
x = 8√2 см
Р = 8√2 · 4 = 32√2 см
4. Из прямоугольного треугольника ACD по теореме Пифагора найдем АС:
АС = √(AD² - CD²) = √(225 - 64) = √161
Площадь параллелограмма равна произведению стороны на проведенную к ней высоту:
Sabcd = CD · AC = 8 · √161 = 8√161 см²
5. ΔАВН: ∠Н = 90°, ∠А = 60°, ⇒ ∠В = 30°. Напротив угла в 30° лежит катет, равный половине гипотенузы, АН = АВ/2 = 4 см.
По теореме Пифагора ВН = √(АВ² - АН²) = √(64 - 16) = √48 = 4√3 см
АН : HD = 2 : 3, ⇒ HD = 6 см.
HBCD - прямоугольник, ⇒ ВС = HD = 6 см.
Sabcd = (AD + BC)/2 · BH = (10 + 6)/2 · 4√3 = 32√3 см
6. ΔACD прямоугольный, DE его высота. По свойству пропорциональных отрезков в прямоугольном треугольнике:
DE² = AE · EC = 8 · 4 = 32
DE = √32 = 4√2 см
ΔAED: по теореме Пифагора
AD = √(AE² + ED²) = √(64 + 32) = √96 = 4√6 см
ВС = AD = 4√6 см
ΔCDE: по теореме Пифагора
CD = √(EC² + ED²) = √(16 + 32) = √48 = 4√3 см
АВ = CD = 4√3 см
а) АВ : ВС = 4√3 / (4√6) = 1/√2 = √2/2
б) Pabcd = (AB + BC)·2 = (4√3+ 4√6)·2 = 8·(√3 + √6) см
в) Sabcd = AB·BC = 4√3 · 4√6 = 16√18 = 48√2 см
7. Так как треугольники подобны,
BC : BD = BD : AD
BD² = BC · AD = 8 · 12,5 = 100
BD = 10 см
8. Треугольник АВС равнобедренный, медиана ВН является и высотой.
Из ΔАВН по теореме Пифагора:
ВН = √(АВ² - АН²) = √(625 - 49) = √576 = 24 см
Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины:
ВО : ОН = 2 : 1, ⇒ ОН = ВН/3 = 8 см
Из треугольника АОН по теореме Пифагора:
АО = √(ОН² + АО²) = √(64 + 49) = √113 см
АО = 2/3 АМ
АМ = √113 · 3/2 = 3√113/2 см
В равнобедренном треугольнике медианы, проведенные к боковым сторонам равны, значит
СК = АМ = 3√113/2 см