1) если два катета одного прямоугольного треугольника равны
соответственно двум катетам другого прямоугольного треугольника, то
такие треугольники равны - первый признак равенства треугольников по двум сторонам и углу между ними
4) если две стороны одного прямоугольного треугольника равны
соответственно двум сторонам другого прямоугольного треугольника,
то такие треугольники равны - если две стороны одного прямоугольного треугольника равны соответственно двум сторонам другого прямоугольного треугольника, то и третья сторона одного треугольника равна третьей стороне другого треугольника; такие треугольники равны по трем сторонам
Дано: трапеция ABCD равнобедренная (AD || BC ; AB =CD) AE =EB ; BF =FC ; CM=MD ; DN =NA . ----- док-ать EFMN ⇒ромб
Середины любого четырехугольника (даже не выпуклого) образуют параллелограмм. В случае равнобедренной трапеции ( поскольку диагонали равны ) этот четырехугольник будет ромб . --- EF и NM средние линии соответственно треугольников ABC и ADC. Следовательно: EF =AC/2 =NM и EF || AC , NM || AC ⇒ EF || NM . Четырехугольник EFMN параллелограмм. ΔEAN = ΔMDN (по первому признаку равенства Δ -ов) AE =AB/2 =DC/2 =DM и AN =DN =AD/2 ; ∠EAN = ∠MDN ) Значит EN = MN . Стороны параллелограмма EFMN равны⇒ EFMN -ромб. Доказано ------------------------------------------------------------------------------------------- * * * Можно и так ΔABD = ΔDCA (по первому признаку равенства Δ -ов) (AD - общее , AB =DC , ∠BAD =∠CDA * * * см фото
1) если два катета одного прямоугольного треугольника равны
соответственно двум катетам другого прямоугольного треугольника, то
такие треугольники равны - первый признак равенства треугольников по двум сторонам и углу между ними
4) если две стороны одного прямоугольного треугольника равны
соответственно двум сторонам другого прямоугольного треугольника,
то такие треугольники равны - если две стороны одного прямоугольного треугольника равны соответственно двум сторонам другого прямоугольного треугольника, то и третья сторона одного треугольника равна третьей стороне другого треугольника; такие треугольники равны по трем сторонам
трапеция ABCD равнобедренная (AD || BC ; AB =CD)
AE =EB ; BF =FC ; CM=MD ; DN =NA .
-----
док-ать EFMN ⇒ромб
Середины любого четырехугольника (даже не выпуклого) образуют параллелограмм. В случае равнобедренной трапеции ( поскольку диагонали равны ) этот четырехугольник будет ромб .
---
EF и NM средние линии соответственно треугольников ABC и ADC.
Следовательно:
EF =AC/2 =NM
и
EF || AC , NM || AC ⇒ EF || NM .
Четырехугольник EFMN параллелограмм.
ΔEAN = ΔMDN (по первому признаку равенства Δ -ов)
AE =AB/2 =DC/2 =DM и AN =DN =AD/2 ; ∠EAN = ∠MDN )
Значит EN = MN .
Стороны параллелограмма EFMN равны⇒
EFMN -ромб. Доказано
-------------------------------------------------------------------------------------------
* * * Можно и так ΔABD = ΔDCA (по первому признаку равенства Δ -ов)
(AD - общее , AB =DC , ∠BAD =∠CDA * * *
см фото