3.Формула S=1/2*d1*d2. Подставляем значения S=1/2*10*8=40cм².
Формула периметра по диагоналям: Р=4√(d1÷2)²+(d2÷2)²
подставим значения Р=4√(10÷2)²+(8÷2)²=4√5²+4²=36 см.
4. Формула площади параллелограмма: S=1/2*a*h. Построим высоту h. Из условия видим , что h-катет, противолежащий углу 30° ⇒ он равен половине гипотенузы, значит h=30÷2=15см. Подставляем значения в формулу площади S=1/2*52*15=390см².
5.Формула площади трапеции : S=1/2*h*(a+b)
в=15см-большее основание, тогда а=15-5=10см-меньшее основание, вычислим высоту h=15÷3=5. Подставим значения S=1/2*5*(15+10)=62.5cм²
Диагонали ромба пересекаются под прямым углом. Если на диагоналях ромба от точки их пересечения отложены четыре равных отрезка, то в полученном четырехугольника получится, что диагонали равны, взаимно перпендикулярны, точкой пересечения делятся пополам и делят углы четырехугольника пополам (то, что делят углы пополам видно из того, что диагоналями четырёхугольник делится на 4 равных равнобедренных прямоугольных треугольника, у которых катеты -это половина диагоналей, а гипотенуза - сторона четырехугольника; следовательно углы при гипотенузе равны по 45 градусов). Углы полученного четырехугольника - прямые. Все это относится к свойствам квадрата, значит четырёхугольник -квадрат, что и требовалось доказать.
1. S=1/2*a*h
h=18, найдем а=18/3=6, подставляем S=1/2*6*18=54cм².
2. Площадь прямоугольного треугольника вычисляется по формуле
S=1/2*a*b (a,b - катеты). Пусть а=20, тогда в=2/5*20=8см. Подставим значения: S=1/2*20*8=80 см².
3.Формула S=1/2*d1*d2. Подставляем значения S=1/2*10*8=40cм².
Формула периметра по диагоналям: Р=4√(d1÷2)²+(d2÷2)²
подставим значения Р=4√(10÷2)²+(8÷2)²=4√5²+4²=36 см.
4. Формула площади параллелограмма: S=1/2*a*h. Построим высоту h. Из условия видим , что h-катет, противолежащий углу 30° ⇒ он равен половине гипотенузы, значит h=30÷2=15см. Подставляем значения в формулу площади S=1/2*52*15=390см².
5.Формула площади трапеции : S=1/2*h*(a+b)
в=15см-большее основание, тогда а=15-5=10см-меньшее основание, вычислим высоту h=15÷3=5. Подставим значения S=1/2*5*(15+10)=62.5cм²
Диагонали ромба пересекаются под прямым углом. Если на диагоналях ромба от точки их пересечения отложены четыре равных отрезка, то в полученном четырехугольника получится, что диагонали равны, взаимно перпендикулярны, точкой пересечения делятся пополам и делят углы четырехугольника пополам (то, что делят углы пополам видно из того, что диагоналями четырёхугольник делится на 4 равных равнобедренных прямоугольных треугольника, у которых катеты -это половина диагоналей, а гипотенуза - сторона четырехугольника; следовательно углы при гипотенузе равны по 45 градусов). Углы полученного четырехугольника - прямые. Все это относится к свойствам квадрата, значит четырёхугольник -квадрат, что и требовалось доказать.