Если провести диаметр OY (это я его так обозначил, чтобы как-то потом называть), параллельно CD и перпендикулярно (само собой) AB, то он пройдет через середину AB, то есть точки A и B симметричны относительно OY; Теперь надо построить хорду C1D1, симметричную CD относительно OY; ясно, что она параллельна CD и перпендикулярна AB, ясно, что C1D1 = CD; и вообще - CDD1C1 это прямоугольник. Что означает, что CD1 - диаметр. Поскольку при зеркальном отражении относительно OY точка A переходит в B, а точка D - в точку D1, то BD = AD1; (по определению равенства фигур, между прочим). Остается заметить, что, раз CD1 - диаметр, то треугольник ACD1 - прямоугольный, и записать для него теорему Пифагора.
У задачи 2 решения. Рассмотрим рисунки приложения.
1) Пусть углы при основании АС= α, угол при вершине В=β
Тогда из суммы углов треугольника ∠АDВ =180°-2β. Тот же угол, как смежный при ∠АDС, равен 180°-α. Приравняем найденные значения угла:
180°-2β=180°-α, откуда α=2β. Тогда в ∆ АВС сумма углов 2•2β+ β=180°, откуда β=180°:5=36°. ⇒ Угол В=36°, углы при АС по 72°.
–––––––––––––––––––––––––––––––––––––––––––
2) Если ∆ АВС с тупым углом А=β, и В=С=α, то принцип решения тот же, и углы при основании ВС будут по 36°, угол ВАС=108°.
Теперь надо построить хорду C1D1, симметричную CD относительно OY; ясно, что она параллельна CD и перпендикулярна AB, ясно, что C1D1 = CD; и вообще - CDD1C1 это прямоугольник. Что означает, что CD1 - диаметр.
Поскольку при зеркальном отражении относительно OY точка A переходит в B, а точка D - в точку D1, то BD = AD1; (по определению равенства фигур, между прочим).
Остается заметить, что, раз CD1 - диаметр, то треугольник ACD1 - прямоугольный, и записать для него теорему Пифагора.