Обозначим через D середину АС и проведем через эту точку перпендикуляр к АС. Пусть этот перпендикуляр пересекается с прямой АВ в точке В1, а с прямой СВ в точке В2. Тогда по второму признаку треугольники АDВ1 и СDВ2 равны, поскольку АD = СD , углы B1АD и В2СD равны по условию, а равенство углов В1DА и В2DС следует из этого, что В1 и В2 лежат на перпендикуляре к АС, проходящем через D. Таким образом, DВ1 = DВ2 , точки B1 и В2 должны совпасть друг с другом, а значит, совпасть с точкой В. Следовательно, АВ = СВ.
Углы параллелограмма: 60°, 60°, 120°, 120°
Объяснение:
CD = AB = 5√2 cм как противолежащие стороны параллелограмма.
ΔACD: по теореме синусов:
CD/sin 45° = AC/sin∠ADC
5√2 / (√2/2) = 5√3/sin∠ADC
sin∠ADC = 5√3/10 = √3/2
1. ∠ADC - острый
∠ADC = 60°, тогда ∠АСВ = 180° - ∠ADC = 120° (сумма углов параллелограмма, прилежащих к одной стороне, равна 180°)
2. ∠ADC - тупой.
∠ADC = 120°, тогда ∠АСВ = 180° - ∠ADC = 60°
В параллелограмме противолежащие углы равны.
ответ: Углы параллелограмма: 60°, 60°, 120°, 120°.