В прямоугольном треугольнике АВС угол С - прямой, D, E и F - точки касания вписанной в треугольник окружности. AD=AE, CD=CF и BE=BF как отрезки касательных, проведенных из одной точки. Тогда АЕ=АС-DC, а ВЕ=СВ-СF. Но СD=CF=4, так как СDOF - квадрат (радиусы вписанной окружности перпендикулярны касательным в точках касания), Значит АЕ=АС-4, ВЕ=СВ-4, АВ=АЕ+ВЕ=АС-4+СВ-4. А так как АВ=26(дано), имеем: АС-4+СВ-4=26. Отсюда АС+СВ=34. Периметр треугольника равен АС+СВ+АВ=34+26=60. ответ: периметр треугольника равен 60.
Решается очень просто, просто нужно немножко подумать.Постараюсь объяснить! из точки В к основанию АД опускаешь высоту, получается высота ВК. из точки С опускаешь высоту к основанию АД, получается высота СМ. ВСМК-прямоугольник, значит ВС=КМ=4. Из АД-КМ=18-4=14 АК=МД=14/2=7 В прямоугольном треугольнике, против угла 30 градусов, лежит катет равный половине гипотенузы. В треугольнике АВК угол А 60 градусов(по условию), угол К 90 градусов(ВК высота), значит угол В=180-(90+60)=30 Катет АК лежит против угла В, то есть против угла 30 градусов, отсюда следует: АВ=2хАК=2х7=14
Тогда АЕ=АС-DC, а ВЕ=СВ-СF. Но СD=CF=4, так как СDOF - квадрат (радиусы вписанной окружности перпендикулярны касательным в точках касания), Значит АЕ=АС-4, ВЕ=СВ-4, АВ=АЕ+ВЕ=АС-4+СВ-4. А так как АВ=26(дано), имеем: АС-4+СВ-4=26. Отсюда АС+СВ=34.
Периметр треугольника равен АС+СВ+АВ=34+26=60.
ответ: периметр треугольника равен 60.
из точки В к основанию АД опускаешь высоту, получается высота ВК.
из точки С опускаешь высоту к основанию АД, получается высота СМ.
ВСМК-прямоугольник, значит ВС=КМ=4. Из АД-КМ=18-4=14
АК=МД=14/2=7
В прямоугольном треугольнике, против угла 30 градусов, лежит катет равный половине гипотенузы.
В треугольнике АВК угол А 60 градусов(по условию), угол К 90 градусов(ВК высота), значит угол В=180-(90+60)=30
Катет АК лежит против угла В, то есть против угла 30 градусов, отсюда следует: АВ=2хАК=2х7=14