Сумма векторов строится так: к концу первого "пристраивается" (параллельным переносом) второй, к концу второго - третий и так далее. Результирующий вектор (суммы) - это начало первого вектора и конец последнего.В нашем случае угол между векторами, идущими из центра к вершинам правильного 17-ти угольника равен 360°/17. Тогда угол между двумя векторами, образующими сумму двух этих векторов по правилу параллелограмма, равен 180°-360°/17 = (17*180-2*180)/17=15*180/17.Таких углов у нас 17, их сумма равна 15*180°.Но и сумма углов правильного 17-ти угольника по формуле равна180°(n-2), то есть для нашего случая 15*180°.Значит вектора, составляющие сумму указанных векторов, образуют ПРАВИЛЬНЫЙ 17-ти угольник, а это значит, что конец последнего (17-го) вектора попадет в начало первого, замкнув ломаную линию суммы векторов.Итак, сумма указанных векторов равно нулевому вектору, то есть равна нулю, что и требовалось доказать.
Площадь боковой проверхности призмы равна произведению ее высоты на периметр основания. Для ответа на вопрос задачи нужно знать высоту призмы. Найдем по т. косинусов диагональ основания АС. Сумма углов при одной стороне параллелограмма равна 180° Следовательно, угол АВС=180°-30°=150° Пусть АВ=4см ВС=4√3 см АС²=АВ²+ ВС² -2*АВ*ВС* cos (150°) косинус тупого угла - число отрицательное. АС²=16+48+32√3*(√3):2=112 АС=√112=4√7 Высота призмы СС1=АС: ctg(60°)=(4√7):1/√3 CC1=4√21 Площадь боковой поверхности данной призмы S=H*P=4√21*2(4+4√3)=32√21*(1+√3) см²
Для ответа на вопрос задачи нужно знать высоту призмы. Найдем по т. косинусов диагональ основания АС.
Сумма углов при одной стороне параллелограмма равна 180°
Следовательно, угол АВС=180°-30°=150°
Пусть АВ=4см
ВС=4√3 см
АС²=АВ²+ ВС² -2*АВ*ВС* cos (150°)
косинус тупого угла - число отрицательное.
АС²=16+48+32√3*(√3):2=112
АС=√112=4√7
Высота призмы
СС1=АС: ctg(60°)=(4√7):1/√3
CC1=4√21
Площадь боковой поверхности данной призмы
S=H*P=4√21*2(4+4√3)=32√21*(1+√3) см²