Поэтому АЕ = 12 (теорема Пифагора), AD =АЕ + ЕD = 22;
меньшая диагональ находится из треугольника BCD с катетами 5 и 10, и равна 5*корень(5);
N - середина BC, M - срердина AD, MD = 11, NC = 5, то есть нужный отрезок находится как гипотенуза треугольника, составленного из высоты из точки N (на рисунке основание на AD буквой не обозначено, пусть это Т) и катета МТ длиной
МТ = MD - NC = 6;
MN^2 = 6^2 + 5^2 = 61. MN = корень(61);
Можно было показать, что MN = ВК, где ВК - медиана в треугольнике АВЕ. Результат получился бы таким же.
Сторона 16/4 = 4, площадь 4*4*sin(60) = 8*корень(3);
я заметил, что тут уже есть точно такое же решение этой задачи, и я так понял, что оно чем-то не устраивает.
На самом деле можно вот что сделать - разбить ромб на 2 равносторонних треугольника со стороной 4 (раз угол 60 радусов, то малая диагональ будет такой же, как сторона) теперь в этом треугольнике надо найти высоту (все равно какую). поскольку высота в нем совпадает с биссектрисой и медианой из то же вершины, то она образует с боковой стороной и ПОЛОВИНОЙ основания прямоугольный треугольник. Считаем её длину по теореме Пифагора :
Высота равна корень(4^2 - 2^2) = 2*корень(3);
Теперь считаем площадь ОДНОГО треугольника, это будет (1/2)*4*2*корень(3),
то есть 4*корень(3); поскольку ромб разрезан на 2 треугольника, ответ будет
ВЕ перпендикулярно AD (см чертеж) ED = BC = 10;
в прямоугольном треугольнике АВЕ ВЕ = 5;
Поэтому АЕ = 12 (теорема Пифагора), AD =АЕ + ЕD = 22;
меньшая диагональ находится из треугольника BCD с катетами 5 и 10, и равна 5*корень(5);
N - середина BC, M - срердина AD, MD = 11, NC = 5, то есть нужный отрезок находится как гипотенуза треугольника, составленного из высоты из точки N (на рисунке основание на AD буквой не обозначено, пусть это Т) и катета МТ длиной
МТ = MD - NC = 6;
MN^2 = 6^2 + 5^2 = 61. MN = корень(61);
Можно было показать, что MN = ВК, где ВК - медиана в треугольнике АВЕ. Результат получился бы таким же.
ответ не слишком красив :(((
Сторона 16/4 = 4, площадь 4*4*sin(60) = 8*корень(3);
я заметил, что тут уже есть точно такое же решение этой задачи, и я так понял, что оно чем-то не устраивает.
На самом деле можно вот что сделать - разбить ромб на 2 равносторонних треугольника со стороной 4 (раз угол 60 радусов, то малая диагональ будет такой же, как сторона) теперь в этом треугольнике надо найти высоту (все равно какую). поскольку высота в нем совпадает с биссектрисой и медианой из то же вершины, то она образует с боковой стороной и ПОЛОВИНОЙ основания прямоугольный треугольник. Считаем её длину по теореме Пифагора :
Высота равна корень(4^2 - 2^2) = 2*корень(3);
Теперь считаем площадь ОДНОГО треугольника, это будет (1/2)*4*2*корень(3),
то есть 4*корень(3); поскольку ромб разрезан на 2 треугольника, ответ будет
8*корень(3);