Обьем пирамиды равен длина боковой грани умножить на длина боковой грани умножить на высота пирамиды и делить это все на 2. найдем высоту, т к угол между апофемой (высотой боковой грани) и основанием равен 45 градусов, то синус 45 градусов равен н/10 (где н - высота) н=((корень из 2)/2)*10=5 корней из 2 теперь найдем половину основания: тангенс 45 градусов=высота/х (где х - половина основания) (тангенс 45 градусов равен 1) х= (5 корней из 2)/1 значит основание будет равно (5 корней из 2)*2=10 корней из 2 теперь находим обьем пирамиды ((10 корней из 2)*(10 корней из 2)*(5 корней из 2))/2= 500 корней из 2 (кубических сантиметров) ответ: 500 корней из 2 (см³)
Треугольник с заданными сторонами имеет совершенно определённые углы, которые можно вычислить по теореме косинусов. Но можно обойтись и без этой теоремы. Угол в 97 градусов тупой, значит треугольник должен быть тупоугольным. Стоит доказать, что наш треугольник не такой и дело сделано, тем более, что нас не просили вычислить его углы. Наибольший угол в треугольнике лежит напротив наибольшей стороны - это 8 см. Теперь, по теореме Пифагора c²=a²+b²=5²+7²=25+49=74, с=√74≈8.6 см. Прямоугольный треугольник с катетами 5 и 7 см должен иметь гипотенузу в 8.6 см, а у нас сторона всего 8 см. Не хватает длины - не хватает градусов, значит наибольший угол этого треугольника - острый, то есть он меньше 97 градусов. Вот и всё!. ответ: не может.