Сорчно решите 98 в прямоугольном треугольнике abc мзвестны катет bc =35 см и гипотенуза ab=125 см . найдите медианы в и с биссектрису с и высоту с . с рисунком 98
Площадь осевого сечения цилиндра равна произведению диаметра его основания на высоту.
Поскольку отрезок, соединяющий центр верхнего основания с одним из концов данной хорды образует с осью цилиндра угол 45 градусов, высота цилиндра равна его радиусу r ( см.рисунок).
Площадь осевого сечения даного цилиндра равна
S=r·2r= 2r²
Чтобы найти радиус основания цилиндра, рассмотрим Δ МОВ. Этот треугольник - равносторонний, так как образован хордой и двумя радиусами, угол между которыми равен 60 °.
Высота этог трегольника 2√3, по формуле высоты равностороннего треугольника найдем сторону его а
(а√3):2=2√3, где а=r - сторона треугольника МОВ.
а√3 =2*2√3
а=4
Итак, радиус окружности основания равен 4 см, диаметр 8 см, высота цилиндра 4 см.
Обозначим высоту треугольника АВС :ВД=Х,имеющего углы А=45*,В=105* и С=30* соответственно,согласно условия; Тогда АВ=Х\/2; ВС=2Х( сторона против угла 30*); а АД=Х и ДС=(Х\/3)2; соответственно; Находим площадь через сторону АС и высоту Х, получим:Х^2=80/(2+\/3); Откуда Х=\/80/(2+\/3); Зная высоту Х и стороны АВ=Х\/2;ВС=2Х , а также СД=Х+Х\/3/2; НАХОДИМ каждую высоту, разделив 2Sпл.на каждую из сторон: Например:2S/2X=S/\/80(2+\/3); А также 3-ю высоту:2S/X\/2=2S/(X\/2) ответ: h1=\/80/(2+\/3); h2=S/\/80(2+\/3); h3=2S/(X\/2)
Площадь осевого сечения цилиндра равна произведению диаметра его основания на высоту.
Поскольку отрезок, соединяющий центр верхнего основания с одним из концов данной хорды образует с осью цилиндра угол 45 градусов, высота цилиндра равна его радиусу r ( см.рисунок).
Площадь осевого сечения даного цилиндра равна
S=r·2r= 2r²
Чтобы найти радиус основания цилиндра, рассмотрим Δ МОВ. Этот треугольник - равносторонний, так как образован хордой и двумя радиусами, угол между которыми равен 60 °.
Высота этог трегольника 2√3, по формуле высоты равностороннего треугольника найдем сторону его а
(а√3):2=2√3, где а=r - сторона треугольника МОВ.
а√3 =2*2√3
а=4
Итак, радиус окружности основания равен 4 см, диаметр 8 см, высота цилиндра 4 см.
S осевого сечения=2r²=32 см²