Треугольник – самая простая замкнутая прямолинейная фигура, одна из первых, свойства которых человек узнал еще в глубокой древности, т. к. эта фигура всегда имела широкое применение в практической жизни.
Изображения треугольников и задачи на треугольники встречаются во многих папирусах Древней Греции и Древнего Египта.. Еще в древности стали вводить некоторые знаки обозначения для геометрических фигур.
Древнегреческий ученый Герон (I век) впервые применил знак вместо слова треугольник.
Прямоугольный треугольник занимал почетное место в Вавилонской геометрии. Стороны прямоугольного треугольника: гипотенуза и катеты.
Термин «гипотенуза» происходит от греческого слова «ипонейноуза», обозначающее «тянущаяся над чем-либо», «стягивающая». Слово берет начало от образа древнегреческих арф, на которых струны натягиваются на концах двух взаимно-перпендикулярных подставок. Термин «катет» происходит от греческого слова «катетос», которое означает начало «отвес», «перпендикуляр».
Евклид говорил: «Катеты – это стороны, заключающие прямой угол».
В Древней Греции уже был известен построения прямоугольного треугольника на местности. Для этого использовали веревку, на которой были завязаны 13 узелков, на одинаковом расстоянии друг от друга. Давайте и мы попробуем построить прямоугольный треугольник.
Обозначай катеты незатейливыми буквами х и у. Тогда выполнятся два соотношения: x^2 + y^2 = 6,1^2 x+y=7,1
Это система из двух уравнений с двумя неизвестными. Решаем. Из второго выбираем х=7,1-у, и подставляем в первое. Образуется квадратное уравнение. (7,1-у)^2 + y^2 = 6,1^2 Решаем 50,41 - 14,2y +y^2 + y^2 = 37,21 2*y^2 - 14,2*y+13,2 = 0 y= 1,1 и 6 -- это два катета. Выбираешь из них больший 6, и это ответ
Для второго треугольника проделываешь точно такие же манипуляции по этим же формулам, и получаешь катеты 5,4 и 7,2. Выбираешь из них меньший 5,4 - и это ответ.
Изображения треугольников и задачи на треугольники встречаются во многих папирусах Древней Греции и Древнего Египта.. Еще в древности стали вводить некоторые знаки обозначения для геометрических фигур.
Древнегреческий ученый Герон (I век) впервые применил знак вместо слова треугольник.
Прямоугольный треугольник занимал почетное место в Вавилонской геометрии. Стороны прямоугольного треугольника: гипотенуза и катеты.
Термин «гипотенуза» происходит от греческого слова «ипонейноуза», обозначающее «тянущаяся над чем-либо», «стягивающая». Слово берет начало от образа древнегреческих арф, на которых струны натягиваются на концах двух взаимно-перпендикулярных подставок. Термин «катет» происходит от греческого слова «катетос», которое означает начало «отвес», «перпендикуляр».
Евклид говорил: «Катеты – это стороны, заключающие прямой угол».
В Древней Греции уже был известен построения прямоугольного треугольника на местности. Для этого использовали веревку, на которой были завязаны 13 узелков, на одинаковом расстоянии друг от друга. Давайте и мы попробуем построить прямоугольный треугольник.
Тогда выполнятся два соотношения:
x^2 + y^2 = 6,1^2
x+y=7,1
Это система из двух уравнений с двумя неизвестными. Решаем. Из второго выбираем х=7,1-у, и подставляем в первое. Образуется квадратное уравнение.
(7,1-у)^2 + y^2 = 6,1^2
Решаем
50,41 - 14,2y +y^2 + y^2 = 37,21
2*y^2 - 14,2*y+13,2 = 0
y= 1,1 и 6 -- это два катета. Выбираешь из них больший 6, и это ответ
Для второго треугольника проделываешь точно такие же манипуляции по этим же формулам, и получаешь катеты 5,4 и 7,2. Выбираешь из них меньший 5,4 - и это ответ.