Решается с применением теоремы: биссектриса, опущенная на сторону треугольника, делит её на отрезки в сотношением, равным отношению двух других сторон треугольника.
Если из одной точки проведены к окружности касательная и секущая, то произведение всей секущей на её внешнюю часть равно квадрату касательной. То есть АВ*АК=АС². Или АВ*(АВ-2АС)=АС². Подставляем известные значения: 12(12-2АС)=АС² или АС²+24*АС-144. АС= -12+12√2 = 12(√2-1). 2.Соединим середину хорды АВ (точку D) с серединой хорды АС (точка Е). Отрезок DF перпендикулярен АС (расстояние от середины хорды АВ до хорды АС), тогда AF=3(так как DA=5см, а DF=4см), EF = 3см (6-3=3) а DЕ = 5см. DЕ - средняя линия треугольника АВС, поэтому ВС=10см. Тогда радиус описанной окружности находим по формуле R=abc/[4√p(p-a)(p-b)(p-c). R = 10*12*10/[4√(16*6*6*4)=300/48 = 6,25. 3.Если из точки, лежащей вне окружности, проведены две секущие, то произведение одной секущей на её внешнюю часть равно произведению другой секущей на её внешнюю часть. Имеем: АС*АВ = АК*АD или 20*DK = 25*(25-DK). 20*DK=625 -25*DK; 45DK=625. DK = 13и8/9.
Объяснение:
Решается с применением теоремы: биссектриса, опущенная на сторону треугольника, делит её на отрезки в сотношением, равным отношению двух других сторон треугольника.
1)
пусть Х - длина отрезка AD:
AD = х, тогда СD = (20 - х).
Составим пропорцию по теореме:
\begin{gathered}\frac{AD}{DC}=\frac{AB}{BC}\\ \frac{x}{20-x}=\frac{10}{15}\\ 15x = 10(20-x)\\ 15x = 200-10x\\ 15x + 10x = 200\\ 25x = 200\\ x = 8\\ AD=8 \\ DC=12\\\end{gathered}
DC
AD
=
BC
AB
20−x
x
=
15
10
15x=10(20−x)
15x=200−10x
15x+10x=200
25x=200
x=8
AD=8
DC=12
2)
Составим пропорцию по теореме:
\begin{gathered}\frac{AD}{DC}=\frac{AB}{BC}\\ \frac{8}{5}=\frac{16}{BC}\\ BC = \frac{16*5}{8}\\ BC = 10\\\end{gathered}
DC
AD
=
BC
AB
5
8
=
BC
16
BC=
8
16∗5
BC=10
3)
пусть Х - длина отрезка AD:
AD = х, тогда СD = (х+1).
Составим пропорцию по теореме:
\begin{gathered}\frac{AD}{DC}=\frac{AB}{BC}\\ \frac{x}{x+1}=\frac{2}{7}\\ 7x = 2(x+1)\\ 7x = 2x+2\\ 5x = 2 \\ x = 0.4\\ AD=0.4 \\ DC=1.4\\ AC=AD+DC=0.4+1.4=1.8\\\end{gathered}
DC
AD
=
BC
AB
x+1
x
=
7
2
7x=2(x+1)
7x=2x+2
5x=2
x=0.4
AD=0.4
DC=1.4
AC=AD+DC=0.4+1.4=1.8
АС= -12+12√2 = 12(√2-1).
2.Соединим середину хорды АВ (точку D) с серединой хорды АС (точка Е).
Отрезок DF перпендикулярен АС (расстояние от середины хорды АВ до хорды АС), тогда AF=3(так как DA=5см, а DF=4см), EF = 3см (6-3=3) а DЕ = 5см. DЕ - средняя линия треугольника АВС, поэтому ВС=10см.
Тогда радиус описанной окружности находим по формуле
R=abc/[4√p(p-a)(p-b)(p-c).
R = 10*12*10/[4√(16*6*6*4)=300/48 = 6,25.
3.Если из точки, лежащей вне окружности, проведены две секущие, то произведение одной секущей на её внешнюю часть равно произведению другой секущей на её внешнюю часть.
Имеем: АС*АВ = АК*АD или 20*DK = 25*(25-DK).
20*DK=625 -25*DK; 45DK=625. DK = 13и8/9.