В ∆ АВС стороны АВ=ВС, ВК - биссектриса.
Рассмотрим ∆ АВК и ∆ СВК.
АВ=ВС, ВК - общая, угол АВК=СВК. ⇒ Треугольники равны по первому признаку: по двум сторонам и углу, заключенному между ними.
Из равенства треугольников ∆ АВК и ∆ СВК следует МК=СК⇒
ВК - медиана ∆ АВС.
В равных треугольниках углы, противолежащие равным сторонам, равны. ⇒
∠ВКА=∠ВКС
АКС – развернутый угол и равен 180°.
ВК делит его на два равных с градусной мерой 180°:2=90° ⇒
ВК⊥АС и является высотой равнобедренного треугольника АВС.
Объяснение:
A(1: - 2) , B( 3:6) , C(5;- 2)
1) Для того чтобы найти координаты вектора надо от координат конца вектора вычесть соответствующую координату начала вектора .
2) Координаты точки М -середины отрезка АВ находятся
по формулам :
3) Найдем координаты вектора CM
4) Если в четырёхугольнике диагонали точкой пересечения делятся пополам, то этот четырехугольник является параллелограммом.
Пусть точка О ( x; y) - середина диагонали АС . Найдем ее координаты по формулам координат середины отрезка.
Найдем координаты середины диагонали BD
(5; 6) - середина диагонали BD
Так как координаты середин диагоналей не совпадают, то четырехугольник ABCD не является параллелограммом.
В ∆ АВС стороны АВ=ВС, ВК - биссектриса.
Рассмотрим ∆ АВК и ∆ СВК.
АВ=ВС, ВК - общая, угол АВК=СВК. ⇒ Треугольники равны по первому признаку: по двум сторонам и углу, заключенному между ними.
Из равенства треугольников ∆ АВК и ∆ СВК следует МК=СК⇒
ВК - медиана ∆ АВС.
В равных треугольниках углы, противолежащие равным сторонам, равны. ⇒
∠ВКА=∠ВКС
АКС – развернутый угол и равен 180°.
ВК делит его на два равных с градусной мерой 180°:2=90° ⇒
ВК⊥АС и является высотой равнобедренного треугольника АВС.
Объяснение:
A(1: - 2) , B( 3:6) , C(5;- 2)
1) Для того чтобы найти координаты вектора надо от координат конца вектора вычесть соответствующую координату начала вектора .
2) Координаты точки М -середины отрезка АВ находятся
по формулам :
3) Найдем координаты вектора CM
4) Если в четырёхугольнике диагонали точкой пересечения делятся пополам, то этот четырехугольник является параллелограммом.
Пусть точка О ( x; y) - середина диагонали АС . Найдем ее координаты по формулам координат середины отрезка.
Найдем координаты середины диагонали BD
(5; 6) - середина диагонали BD
Так как координаты середин диагоналей не совпадают, то четырехугольник ABCD не является параллелограммом.