Стороны параллелограмма равны 9 см и 11 см, а один из углов равен 60. найдите диагонали параллелограмма. ответ дайте в виде суммы квадратов диагоналей.
1. 1) Пусть ABCDA1B1C1D1 - прямоугольный параллелепипед, АВ=8 м, ВС=6 м, ВВ1=2,5 м. Sбок=Pосн*h=2*(АВ+ВС)*ВВ1=2*(8+6)*2,5=2*14*2,5=70 (м²). 2) Находим количество рулонов: 70:5=14 (рулонов). ответ: 14 рулонов.
2. 1) Пусть АВСА1В1С1 - правильная треугольная призма, ВС=3 м, СВ1=5 м. Площадь полной поверхности можно найти по формуле: Sполн=Sбок+2Sосн. 2) Площадь боковой поверхности находим по формуле: Sбок=P*h=3*ВС*ВВ1. Рассмотрим ΔСВВ1 - прямоугольный, по т. Пифагора ВВ1=√(СВ1²-СВ²)=√(5²-3²)=√(25-9)=√16=4 (м). Sбок=P*h=3*ВС*ВВ1=3*3*4=9*4=36 (м²). 3) Так как основание призмы правильный треугольник, то его площадь находим по формуле: S=a²√3/4=ВС²√3/4=3²√3/4=9√3/4 (м²). 4) Sполн=Sбок+2Sосн=36+2*9√3/4=36+9√3/2=9(4+√3/2) (м²). ответ: 9(4+√3/2) м².
Сначала найдем проекцию апофемы на основание пирамиды = sqrt (17^2 - 15^2) = sqrt (289 - 225) = sqrt(64) = 8 . Как известно, величина проекции равна половине стороны основания . Сторона основания равна = 8*2 = 16 . Площадь полной поверхности пирамиды равна S =1/2 * A* a * 4 + Sосн = 2 *A* a + a^2, где A - апофема , a - сторона основания призмы . Объем пирамиды найдем по формуле V = 1/3 * Sосн * h = 1/3 * a^2 * h , где a - сторона основания , h - высота пирамиды . S = 2 * 17 * 16 + 16^2 = 544 + 256 = 800 V = 1/3 * 16^2 * 15 = 1/3 * 256 *15 = 1280
1) Пусть ABCDA1B1C1D1 - прямоугольный параллелепипед, АВ=8 м, ВС=6 м, ВВ1=2,5 м.
Sбок=Pосн*h=2*(АВ+ВС)*ВВ1=2*(8+6)*2,5=2*14*2,5=70 (м²).
2) Находим количество рулонов:
70:5=14 (рулонов).
ответ: 14 рулонов.
2.
1) Пусть АВСА1В1С1 - правильная треугольная призма, ВС=3 м, СВ1=5 м. Площадь полной поверхности можно найти по формуле:
Sполн=Sбок+2Sосн.
2) Площадь боковой поверхности находим по формуле:
Sбок=P*h=3*ВС*ВВ1.
Рассмотрим ΔСВВ1 - прямоугольный, по т. Пифагора
ВВ1=√(СВ1²-СВ²)=√(5²-3²)=√(25-9)=√16=4 (м).
Sбок=P*h=3*ВС*ВВ1=3*3*4=9*4=36 (м²).
3) Так как основание призмы правильный треугольник, то его площадь находим по формуле:
S=a²√3/4=ВС²√3/4=3²√3/4=9√3/4 (м²).
4) Sполн=Sбок+2Sосн=36+2*9√3/4=36+9√3/2=9(4+√3/2) (м²).
ответ: 9(4+√3/2) м².
Как известно, величина проекции равна половине стороны основания . Сторона основания равна = 8*2 = 16 .
Площадь полной поверхности пирамиды равна S =1/2 * A* a * 4 + Sосн = 2 *A* a + a^2, где A - апофема , a - сторона основания призмы .
Объем пирамиды найдем по формуле V = 1/3 * Sосн * h = 1/3 * a^2 * h , где a - сторона основания , h - высота пирамиды . S = 2 * 17 * 16 + 16^2 = 544 + 256 = 800
V = 1/3 * 16^2 * 15 = 1/3 * 256 *15 = 1280