Определение: "Гомотетия - преобразование плоскости (или пространства), заданное центром O и коэффициентом k ≠ 0, переводящее каждую точку X в точку X ′ такую, что OX ′ = k·OX.
Построение.
Из точки О - центра гомотетии проводим лучи а, b и с через вершины А, В и С данного нам треугольника соответственно.
На этих лучах от центра О откладываем отрезки OA', OB' и OC', равные ОА·k = 1,5·ОА, ОВ·k = 1,5·ОВ и ОС·k = 1,5·ОС.
Если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны.
Доказательство.
Пусть треугольники ABC и A1B1C1 такие, что AB=A1B1, AC=A1C1, BC=B1C1. Требуется доказать, что треугольники равны. Допустим, что треугольники не равны. Тогда ∠ A ≠ ∠ A1, ∠ B ≠ ∠ B1, ∠ C ≠ ∠ C1 одновременно. Иначе треугольники были бы равны по первому признаку. Пусть треугольник A1B1C2 – треугольник, равный треугольнику ABC, у которого вершина С2 лежит в одной полуплоскости с вершиной С1 относительно прямой A1B1. Пусть D – середина отрезка С1С2. треугольники A1C1C2 и B1C1C2 равнобедренные с общим основанием С1С2. Поэтому их медианы A1D и B1D являются высотами. Значит, прямые A1D и B1D перпендикулярны прямой С1С2. Прямые A1D и B1D не совпадают, так как точки A1, B1, D не лежат на одной прямой. Но через точку D прямой С1С2 можно провести только одну перпендикулярную ей прямую. Мы пришли к противоречию. Теорема доказана.
Построение в объяснении.
Объяснение:
Определение: "Гомотетия - преобразование плоскости (или пространства), заданное центром O и коэффициентом k ≠ 0, переводящее каждую точку X в точку X ′ такую, что OX ′ = k·OX.
Построение.
Из точки О - центра гомотетии проводим лучи а, b и с через вершины А, В и С данного нам треугольника соответственно.
На этих лучах от центра О откладываем отрезки OA', OB' и OC', равные ОА·k = 1,5·ОА, ОВ·k = 1,5·ОВ и ОС·k = 1,5·ОС.
Полученные точки A', B' и C' соединяем отрезками.
Получили треугольник A'B'C' гомотетичный данному.
Если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны.
Доказательство.
Пусть треугольники ABC и A1B1C1 такие, что AB=A1B1, AC=A1C1, BC=B1C1. Требуется доказать, что треугольники равны.
Допустим, что треугольники не равны. Тогда ∠ A ≠ ∠ A1, ∠ B ≠ ∠ B1, ∠ C ≠ ∠ C1 одновременно. Иначе треугольники были бы равны по первому признаку.
Пусть треугольник A1B1C2 – треугольник, равный треугольнику ABC, у которого вершина С2 лежит в одной полуплоскости с вершиной С1 относительно прямой A1B1.
Пусть D – середина отрезка С1С2. треугольники A1C1C2 и B1C1C2 равнобедренные с общим основанием С1С2. Поэтому их медианы A1D и B1D являются высотами. Значит, прямые A1D и B1D перпендикулярны прямой С1С2. Прямые A1D и B1D не совпадают, так как точки A1, B1, D не лежат на одной прямой. Но через точку D прямой С1С2 можно провести только одну перпендикулярную ей прямую. Мы пришли к противоречию. Теорема доказана.