3)EF(2*1-3*(-6), 2*7-3*(-8))=(20,38), нужно домножить координаты векторов на соответствующие коэффициенты, затем выполнить вычитание соответствующих векторов
4)1*(-6)+7*(-8)=-62, нужно сложить произведения соответствующих координат векторов
5)-62/10√50, т.к Скалярное произведение это произведение модулей векторов и косинуса угла между ними, нужно разделить Скалярное произведение на произведение модулей векторов
1)МК(-1-(-2), 3-(-4))=(1,7)
РМ(-2-4,-4-4)=(-6,-8)
2)модуль MK: √(1+7^2)=√50
модуль PM√(6^2+8^2)=10
3)EF(2*1-3*(-6), 2*7-3*(-8))=(20,38), нужно домножить координаты векторов на соответствующие коэффициенты, затем выполнить вычитание соответствующих векторов
4)1*(-6)+7*(-8)=-62, нужно сложить произведения соответствующих координат векторов
5)-62/10√50, т.к Скалярное произведение это произведение модулей векторов и косинуса угла между ними, нужно разделить Скалярное произведение на произведение модулей векторов
Треугольник равнобедренный, т.к. ∠В=∠С=80° .
Проведём ВК так , чтобы ∠АВК=60° . Тогда ∠ЕВК=40° , ∠КВС=20° .
ΔВСК: ∠ВКС=180-80-20=80° ⇒ ВС=ВК
ΔВFC: ∠BDC=180-80-50=50 ⇒ BC=BF
ВК=ВС=ВF ⇒ ΔBKF - равнобедренный , ∠КВF=60° ⇒
ΔBKF - равносторонний и все его углы равны 60° , ВК=KF .
∠ВКЕ=180-∠BKC=100° , ∠КВЕ+∠КЕВ=180°-∠ВКЕ=180-100=80 ,
∠ВЕК=180-100-40=40° ⇒ ВК=КЕ
BK=КE=KF
Рассмотрим ΔKFE: КЕ=КF ⇒ ∠KFE=∠KEF ,
∠EKF=∠BKE-∠BKF=100-60=40° , ∠KFE=∠KEF=(180-40):2=70 ,
∠x=∠KEF-∠KEB=70°-40°=30°