Терміновоо! коло , побудоване на стороні ас трикутника авс як на діаметрі , проходить через середину м сторони ав і перетинає сторону вс у точці n так , що bn : nc - 2 : 7 . знайдіть відрізок mn , якщо ас - 6 см
Пишу в ответ, потому что пятая задача полезная, хоть и простая, может, еще кому пригодится. 1) Произведение стороны на высоту к ней равно удвоенной площади, поэтому вторая высота 2. 2) Пусть M лежит на ВС, N на AC, K на AB. О - центр окружности. Пусть угол KMP = α; тогда угол KOP = 2*α; углы OKA и ONA - прямые, поэтому угол BAC = 180° - 2*α; также вычисляются и другие углы. 88°; 48°; 44°; 3) Центр вписанной окружности делит биссектрису в пропорции (a+b)/c; или (P-c)/c; где с - та сторона, к которой проведена биссектриса. [Это очень просто доказать - надо два раза применить известное свойство биссектрисы, сначала к стороне с - она делится биссектрисой на отрезки ca/(a+b) и cb/(a+b); так как центр окружности лежит на всех трех биссектрисах, то сама биссектриса к стороне с делится биссектрисой к стороне b на отрезки в отношении a/(ca/(a+b)) = (a+b)/c;] То есть 34/13 = (P - 39)/39; P = 141; 4) Тр-ки ABC и AHB подобны;AH/AB = AB/AC; AB^2 = 5*45; AB = 15; 5) Если продлить AB и DC до пересечения в точке E, то тр-к ADE прямоугольный. Так как ВCE подобен ADE, то BE/AE = 9/45 = 1/5; и AE - BE = 24; откуда BE = 6; AE = 30; Пусть O - центр окружности, N точка касания её c CD, M - середина AB. О конечно же лежит на перпендикуляре к АВ в его середине, поэтому ОМEN ( :) ) - прямоугольник. То есть радиус окружности 6 + 24/2 = 18;
1)Найдите координаты точки пересечения прямых, заданными уравнениями
x+2y-5=0
3x-y-8=0
x+2y-5=0
3x-y-8=0
х=5-2у
3(5-2у)-у-8=0
15-6у-у-8=0
-7у=-7
у=1
х=5-2*1=3
ответ:(3;1)
2) В каких точках пересекается с осями координат прямая заданная уравнением:
2x-5y+20=0
при х=0 2*0-5у+20=0 Итак, первая точка (0;4)
5у=20
у=4
при у=0 2х-5*0+20=0 Итак, вторая точка (10;0)
2х=20
х=10
ответ: (0;4), (10;0)
3)Прямые y=x+4, y=-2x+1 пересекаются в некоторой точке О, найдите ее координаты.
х+4=-2х+1
х+2х=1-4
3х=-3
х=-1
у(-1)=-1+4=3
ответ: (-1;3)
1) Произведение стороны на высоту к ней равно удвоенной площади, поэтому вторая высота 2.
2) Пусть M лежит на ВС, N на AC, K на AB. О - центр окружности. Пусть угол KMP = α; тогда угол KOP = 2*α; углы OKA и ONA - прямые, поэтому угол BAC = 180° - 2*α; также вычисляются и другие углы. 88°; 48°; 44°;
3) Центр вписанной окружности делит биссектрису в пропорции (a+b)/c; или (P-c)/c; где с - та сторона, к которой проведена биссектриса.
[Это очень просто доказать - надо два раза применить известное свойство биссектрисы, сначала к стороне с - она делится биссектрисой на отрезки ca/(a+b) и cb/(a+b); так как центр окружности лежит на всех трех биссектрисах, то сама биссектриса к стороне с делится биссектрисой к стороне b на отрезки в отношении a/(ca/(a+b)) = (a+b)/c;]
То есть 34/13 = (P - 39)/39; P = 141;
4) Тр-ки ABC и AHB подобны;AH/AB = AB/AC; AB^2 = 5*45; AB = 15;
5) Если продлить AB и DC до пересечения в точке E, то тр-к ADE прямоугольный. Так как ВCE подобен ADE, то BE/AE = 9/45 = 1/5; и AE - BE = 24; откуда BE = 6; AE = 30;
Пусть O - центр окружности, N точка касания её c CD, M - середина AB. О конечно же лежит на перпендикуляре к АВ в его середине, поэтому ОМEN ( :) ) - прямоугольник. То есть радиус окружности 6 + 24/2 = 18;