Построим треугольник ABC АВ примем за 12 см, АС как 10 см.(второй АВ=10, АС=12) проведем высоту ВМ из точки В. Мы получили прямоугольный треугольник АВМ, с прямым углом М и гипотенузой АВ. угол А равен 45 градусов, значит по свойству прямоугольно треугольника угол АВМ равен 45 градусов, следовательно треугольник АВМ равнобедренный, значит АМ=ВМ=х. Дальше по теореме Пифагора(с*=а*+b*, *-квадрат числа) имеем: 12*= х*+х* 144= 2х* х*=72 х= корень из 72 Площадь треугольника равна половине основания на высоту. Высота корень из 72, основание 10 => площадь треугольника равна корень из 72 умножить на 10 и разделить на 2. ответ: 30 корней из 10. второй анологично: АВ=10 - гипотенуза, тогда по теореме Пифагора 10*=х*+х* 100=2х* х*=50 х=корень из 50. Тогда площадь треугольника равна корень из 50 умножить на 10 и разделить на 2. ответ: 25 корней из 2
проведем высоту ВМ из точки В. Мы получили прямоугольный треугольник АВМ, с прямым углом М и гипотенузой АВ. угол А равен 45 градусов, значит по свойству прямоугольно треугольника угол АВМ равен 45 градусов, следовательно треугольник АВМ равнобедренный, значит АМ=ВМ=х. Дальше по теореме Пифагора(с*=а*+b*, *-квадрат числа) имеем: 12*= х*+х* 144= 2х* х*=72
х= корень из 72 Площадь треугольника равна половине основания на высоту. Высота корень из 72, основание 10 => площадь треугольника равна корень из 72 умножить на 10 и разделить на 2. ответ: 30 корней из 10.
второй анологично: АВ=10 - гипотенуза, тогда по теореме Пифагора 10*=х*+х* 100=2х* х*=50 х=корень из 50. Тогда площадь треугольника равна корень из 50 умножить на 10 и разделить на 2. ответ: 25 корней из 2
ответ:1) 105°, 85°, 105°, 85°. 2)115°, 65°, 115°, 65°.
Объяснение:
1) Сумма углов, прилегающих к одной из сторон, равна 180°.
По условию сумма двух углов равна 210°, значит они противоположные, т. к. 210° > 180°.
Противоположные углы ромба равны ⇒ 210°:2=105°.
180°-105°=85°.
ответ: 105°, 85°, 105°, 85°.
2) Пусть х° - больший угол, тогда (х°-50°) - больший угол ромба.
Сумма двух углов ромба, прилегающих к одной стороне, равна 180°.
Составим уравнение:
х+х-50=180, 2х=230, х=115. х-50=65.
ответ: 115°, 65°, 115°, 65°.