Если соединить заданную точку с вершинами треугольника, то получим 3 треугольника с боковыми сторонами 3, 4 и 5 и с равными основаниями. По теореме косинусов составим 3 уравнения, выразив основания "а" через боковые стороны и угол при вершине. а² = 3²+4²-2*3*4*cosα = 25 - 24*cosα a² = 4²+5²-2*4*5*cosβ = 41 - 40*cosβ a² = 5²+3²-2*5*3*cosω = 34 - 30*cosω Получаем 4 неизвестных: а, α, β и ω. Поэтому добавляем четвёртое уравнение: α + β + ω = 2π. Ниже приведено решение системы этих уравнений методом итераций: α градус α радиан cos α a² = a = 25 24 150.0020 2.6180 -0.8660 45.7850 6.7665 41 40 96.8676 1.6907 -0.1196 45.7830 6.7663 34 30 113.1304 1.9745 -0.3928 45.7848 6.7664. С точностью до третьего знака получаем значение стороны равностороннего треугольника, равной 6,766 единиц.
По теореме косинусов составим 3 уравнения, выразив основания "а" через боковые стороны и угол при вершине.
а² = 3²+4²-2*3*4*cosα = 25 - 24*cosα
a² = 4²+5²-2*4*5*cosβ = 41 - 40*cosβ
a² = 5²+3²-2*5*3*cosω = 34 - 30*cosω
Получаем 4 неизвестных: а, α, β и ω.
Поэтому добавляем четвёртое уравнение:
α + β + ω = 2π.
Ниже приведено решение системы этих уравнений методом итераций:
α градус α радиан cos α a² = a =
25 24 150.0020 2.6180 -0.8660 45.7850 6.7665
41 40 96.8676 1.6907 -0.1196 45.7830 6.7663
34 30 113.1304 1.9745 -0.3928 45.7848 6.7664.
С точностью до третьего знака получаем значение стороны равностороннего треугольника, равной 6,766 единиц.
Дано:
усеченный конус
r = O₁B = 5 см
R = OA = 11 см
см
-----------------------------
Найти:
Sсеч - ?
1) Проведем BH⊥AO.
OH = O₁B = r = 5 см
AH = OA - OH = R - r = 11 см - 5 см = 6 см
2) Рассмотрим ΔAHB:
BH⊥AO | ⇒ ΔAHB - прямоугольный
∠AHB = 90° |
AB² = AH² + HB² - по теореме Пифагора, следовательно:h = BH = OO₁ = 8 см
3) Равнобедренная трапеция ABCD является осевым сечением данного усеченного конуса:
4) В трапеции ABCD:
AD = 2AO = 2R = 2×11 см = 22 см h = BH= 8 см
BC = 2BO₁ = 2r = 2×5 см = 10 см
5) Тогда площадь трапеции равна:
⇒
Sсеч = = 128 см²
ответ: Sсеч = 128 см²
P.S. Рисунок показан внизу↓