Призма правильная, значит внутренние углы треугольника в основании равны 60 градусов, тогда угол АВА1, вертикальный углу АВС, так же равен 60, тогда в прямоугольном треугольнике А1ВА сторона АВ=1/2А1В, при чем сумма этих сторон 9 корней из 2, составим уравнение, где АВ=х х+2х=9 корней из 2 3х=9 корней из 2 х=3 корня из 2 В итоге сторона АВ=3 корня из 2, а сторона АВ1=6 корней из 2 Найдём сторону АА1 по теореме Пифагора, АА1=3 корня из 6, тогда площадь одной боковой грани равна S=АА1*АВ=18 корней из 3, тогда полная боковая площадь Sбок= 3S=54корня из 3, а квадрат этой площади равен 8748
9)Пусть дана трапеция ABCD, углы BAD и ABC - прямые. Проведем высоту DH ,тогда разностью оснований трапеции будет отрезок HC(так как AD=BH). Обозначим AB как 4x , тогда DC 5x - (по условию).Из прямоугольного треугольника DHC по теореме Пифагора отрезок HC равен √25x^2-16x^2= 3x, то есть BC-AD=18=3x,откуда x=6, DC=5x=30(см.),AB=DH=4x=24(см.). Из прямоугольного треугольника BDH по теореме Пифагора находим BH: BH=√26^2-24^2=10(см.), основание BC равно HC+BH=28(см.). Площадь трапеции S(ABCD)=(AD+BC)/2*DH= (28+10)/2*24=456 (см^2). ответ: 456
5) Пусть дана трапеция ABCD, углы BAD и ABC - прямые. Проведем высоту DH,тогда отрезок HC=BC-AD=8 (см.). Из прямоугольного треугольника DHC найдем по теореме Пифагора высоту DH: DH=√DC^-HC^2=6 (см.). Площадь трапеции S(ABCD)=(AD+BC)/2*DH=(5+13)/2*6=54(см^2.). ответ: 54
х+2х=9 корней из 2
3х=9 корней из 2
х=3 корня из 2
В итоге сторона АВ=3 корня из 2, а сторона АВ1=6 корней из 2
Найдём сторону АА1 по теореме Пифагора, АА1=3 корня из 6, тогда площадь одной боковой грани равна S=АА1*АВ=18 корней из 3, тогда полная боковая площадь Sбок= 3S=54корня из 3, а квадрат этой площади равен 8748
Проведем высоту DH ,тогда разностью оснований трапеции будет отрезок HC(так как AD=BH).
Обозначим AB как 4x , тогда DC 5x - (по условию).Из прямоугольного треугольника
DHC по теореме Пифагора отрезок HC равен √25x^2-16x^2= 3x,
то есть BC-AD=18=3x,откуда x=6, DC=5x=30(см.),AB=DH=4x=24(см.).
Из прямоугольного треугольника BDH по теореме Пифагора находим BH:
BH=√26^2-24^2=10(см.), основание BC равно HC+BH=28(см.).
Площадь трапеции S(ABCD)=(AD+BC)/2*DH= (28+10)/2*24=456 (см^2).
ответ: 456
5) Пусть дана трапеция ABCD, углы BAD и ABC - прямые.
Проведем высоту DH,тогда отрезок HC=BC-AD=8 (см.).
Из прямоугольного треугольника DHC найдем по теореме Пифагора высоту DH:
DH=√DC^-HC^2=6 (см.).
Площадь трапеции S(ABCD)=(AD+BC)/2*DH=(5+13)/2*6=54(см^2.).
ответ: 54