Точка О - середина боковой стороны AB трапеции ABCD. Известно, что угол OCB равен 30°, а угол OCD прямой. Найдите длину основания AD, если BC = 2, CD = 7
1. Соединяем концы хорды радиусами с центром окружности. Получаем равнобедренный треугольник с основанием 8см и боковыми сторонами равными радиусу окружности. Высота = 3 см. 2. Рассмотрим прямоуг. тр-к, который отсекает высота от упомянутого выше треугольника. Поскольку высота равнобедренного тр-ка является и его медианой, то катеты этого отсеченного тр-ка равны 3см и 8:2=4 см. 3. Тогда гипотенуза, равная радиусу R окружности определяется по формуле квадрат гипотенузы равен сумме квадратов катетов. R= √(3²+4²) = 5 (см).
Дано :
Четырёхугольник ABCD — трапеция.
AM = BM, CN = DN.
BC = 6, AD = 16.
Найти :
x : y = ?
Так как MN соединяет середины боковых сторон трапеции, то MN — средняя линия трапеции (по определению).
Средняя линия трапеции параллельна её основаниям.Следовательно, MN||BC||AD.
Рассмотрим ∆АВС.
МК||ВС (так как МК лежит на MN) и АМ = ВМ (по условию). Тогда по признаку средней линии треугольника. МК — средняя линия ∆АВС.
Средняя линия треугольника равна половине стороны, которой она параллельна.Следовательно, МК = ½ВС = ½*6 = 3.
Рассмотрим ∆ACD.
Аналогично и с KN.
KN = ½AD = ½*16 = 8.
Тогда x : y = 3 : 8.
3 : 8.
1. Соединяем концы хорды радиусами с центром окружности. Получаем равнобедренный треугольник с основанием 8см и боковыми сторонами равными радиусу окружности. Высота = 3 см. 2. Рассмотрим прямоуг. тр-к, который отсекает высота от упомянутого выше треугольника. Поскольку высота равнобедренного тр-ка является и его медианой, то катеты этого отсеченного тр-ка равны 3см и 8:2=4 см. 3. Тогда гипотенуза, равная радиусу R окружности определяется по формуле квадрат гипотенузы равен сумме квадратов катетов. R= √(3²+4²) = 5 (см).