Точка С — середина отрезка АВ. Через точки С и В проведены параллельные прямые с и б соответственно так, что прямые АВ и b не перпендикулярны. а)Докажите, что расстояние от точки А до прямой с равно расстоянию от точки С до прямой b. б)Докажите, что расстояние от точки А до прямой b вдвое больше расстояния между прямыми b и с.
Если не трудно ответьте с решением.
Объяснение:
т.к ДВ перпендикулярно и АВ и ВС, то следовательно АВ и ВС параллельны.
получается что АС секущая при параллельных прямых.
Соответственно угол ЕАВ= углу ЕСД (как внутренние накрест лежащие)
Угол АЕВ= углу СЕВ как вертикальные углы
рассмотрим 2 треугольника АВЕ и СДЕ
они равны по 2 признаку равенства прямоугольных треугольников
(если катет и прилежащий острый угол одного треугольника равен катету и прилежащему углу второго треугольника)
Катеты ДЕ и ВЕ равны по условию
Прилежащие острые углы также АЕВ=СЕД равны.
А если равны треугольники, то и их все стороны так же попарно равны.
Катет АВ= соответствующему катету ДС
1)Рассмотрим треугольник АВС-прямоугольный
найдем гипотенузу по теореме Пифагора: В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов. В нашем случае это будет выглядеть так: ВС(квадрат)=АС(квадрат)+АС(квадрат)
ВС(квадрат)=144+81=225. Следовательно ВС=15
2)найдем площадь треугольника: Площадь=1/2ав. Следовательно площадь=1/2*9*12=54
3)Чтобы найти радиус вписанной окружности надо подставить к другой формуле площади: Площадь=1/2периметр*радиус(вписанной окружности). При этом периметр=АВ+ВС+АС. Периметр=9+12+15=26
Подставляем к формуле: 54=1/2*36*радиус(вписанной окружности). Следовательно радиус(вписанной окружности)=3
4)Рассмотрим треугольник МНО-прямоугольный, т. к. угол О = 90 градусов.
По теореме Пифагора: В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.. В нашем случае это так: МН(квадрат)=МО(квадрат)+ОН(квадрат). МН(квадрат)=16+9=25. Следовательно МН=5
ответ: Расстояние от точки до сторон треугольника равно 5