50, а проекция наклонной равна 6 см. Чему равна длина перпендикуляра, проведённого из этой же точки к плоскости?
4) Если прямая перпендикулярна двум радиусам круга, как она расположена по отношению к самому кругу?
5) Сколько можно провести прямых перпендикулярных данной прямой через данную точку, если а) эта точка лежит на прямой; б) эта точка не лежит на прямой?
6) Как между собой располагаются две прямые перпендикулярные одной и той же плоскости?
7) Могут ли перпендикуляр и наклонная, проведённые из одной и той же точки, иметь равные длины?
Объяснение:
Все задачи решаются через площади треугольников: S(△)=1/2*a*h; S=√p(p-a)(p-b)(p-c); и параллелограмма: S(пар)=a*h
1) S=1/2*16*12=96; с - гипотенуза, с=√(16²+12²)=√(256+144)=20
S=1/2*c*h; h=96*2/20=9.6
2) Если принять, что там дан параллелограмм (в условии этого не сказано, но по-другому я не знаю как решить), то
S(пар)=2*3=6 (через сторону равную 3 и высоту равную 2)
S(пар)=5*h (через другую сторону и искомую высоту) => h=6/5=1.2
3) p=(a+b+c)/2=34
S=√34(34-17)(34-25)(34-26)=√34*17*9*8=204
S=1/2*26*h; h=2*204/26=204/13=15 9/13 (примерно 15,69)
4) a - катет, а=√(25²-20²)=15
S=1/2*15*20=150
S=1/2*25*h; h=2*150/25=12
50, а проекция наклонной равна 6 см. Чему равна длина перпендикуляра, проведённого из этой же точки к плоскости?
4) Если прямая перпендикулярна двум радиусам круга, как она расположена по отношению к самому кругу?
5) Сколько можно провести прямых перпендикулярных данной прямой через данную точку, если а) эта точка лежит на прямой; б) эта точка не лежит на прямой?
6) Как между собой располагаются две прямые перпендикулярные одной и той же плоскости?
7) Могут ли перпендикуляр и наклонная, проведённые из одной и той же точки, иметь равные длины?