Точки А и Вявляются крайними западной и восточной точками непроходимого болота. Из вертолета, находящегося на высоте 67 м, измерили углы 70° и 30°, образованные наклонными, выходящими из вертолета к точкам А и В соответственно, и их проекциями на земле. Найди расстояние между крайними западной и восточной точками болота, используя для нахождения значений синусов четырехзначные математические таблицы или микрокалькулятор. ответ округли до десятых.
Проведем две высоты: АМ и BN. Обозначим каждую высоту за х.
Сторону NC обозначим за у.
Тогда DM=44-16-y=28-y.
По Пифагору:
•треугольник AMD:
х^2=17^2-(28-у)^2
х^2=289-784+56у-у^2
x^2=56y-y^2-495
•треугольник BCN:
х^2=25^2-у^2
х^2=625-у^2
Приравниваем:
56у-у^2-495=625-у^2
56у=1120
у=20.
Подстваляем в любое уравнение:
х^2=625-20^2
х^2=225
х=15.
ответ: высота трапеции - 15.
2. Трапеция ABCD.
Угол ADC=30 градусов.
AD=BC=x - боковая сторона.
Проводим высоту АМ. Обозначаем еe за h.
S=(AB+DC)*h/2.
По свойству(если в четырехугольник вписана окружность, то сумма двух его параллельных сторон равна сумме двум другим параллельным сторонам) определяем, что AB+DC=AD+BC=2x.
S=2x*h/2=x*h=32.
Находим высоту:
Так как она лежит напротив угла в 30 градусов, то по Пифагору она равна половине гипотенузы, т.е. h=x/2.
Подставляем в формулу:
S=x*x/2=32
х^2=64
х=8.
ответ: боковая сторона равнобокой трапеции - 8.
ко второй задаче один угол так же будет 30 градусов т.к 180-(В+С)= 180 -150=30градусов (А); в маленьком треугольнике возьмем АСС1 гипотенуза АС так как из проведенной высоты к основанию получили угол 90 градусов(против большего угла большая сторона) угол А 30 градусов СС1 катет против угла в 30 градусов = 2СС1=АС , 2*2=4
АС=4 должно