В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
dashhach
dashhach
05.03.2021 23:57 •  Геометрия

Треугольник ABC AB=BC B=120 AM=ВЫСОТА AM=9 см

Показать ответ
Ответ:
ycidenis1
ycidenis1
06.01.2020 08:43

S=8√3см²

Объяснение:

Обозначим вершины ромба АВСД, с диагоналями АС и ВД а высоту АН. Рассмотрим ∆АСД. Высота АН делит СД пополам, поэтому она является ещё медианой, следовательно ∆АСД - равнобедренный, поэтому АД=АС, а так как стороны ромба равны, то

АД=СД=АС=АВ=ВС, значит ∆АСД=∆АВС и они являются равносторонними, у которых каждый угол составляет 60°. Так как диагонали ромба, пересекаясь, образуют прямой угол и делятся пополам, то они также образуют 4 равных прямоугольных треугольника. Рассмотрим один из них: ∆АВО. В нём: ВО=ДО=4√3÷2=2√3см. Найдём сторону АВ через синус угла. Синус угла - это отношение противолежащего от угла катета к гипотенузе, тогда

\\ ab = \frac{bo}{ \sin(60) } = 2 \sqrt{3} \div \frac{ \sqrt{3} }{2} = \\ = 2 \sqrt{3} \times \frac{2}{ \sqrt{3} } = \frac{4 \sqrt{3} }{ \sqrt{3} } = 4

Итак: все стороны ромба и диагональ АС=4см. Поскольку нам уже известна меньшая диагональ найдём площадь ромба по формуле:

\\ s = \frac{1}{2} \times ac \times bd = \frac{1}{2} \times 4 \sqrt{3} \times 4 = \\ = \frac{16 \sqrt{3} }{2} = 8 \sqrt{3}

Можно использовать второй вариант, чтобы найти площадь через высоту АН, проведённую к стороне ромба.

Эта высота АН в ∆АСД равна высоте ВО в ∆АВС=2√3 (так как ∆АВС=∆АСД, и они равносторонние, то их высоты равны).

Тогда S=АД×АН=4×2√3=8√3см²


В ромбе высота, которая проведена из вершины тупого угла, делит сторону напополам. Найдите площадь р
0,0(0 оценок)
Ответ:
ruslan2003185
ruslan2003185
02.06.2020 10:03

Синус (sin) – это одна из прямых тригонометрических функций. Находить синус угла в произвольном треугольнике проще всего с использованием теоремы косинусов (cos): квадрат длины любой стороны равен сумме квадратов длин двух других сторон за минусом их удвоенного произведения на косинус угла между ними.

Синус, косинус и тангенс — их еще называют тригонометрическими функциями угла — дают соотношения между сторонами и углами треугольника. Зная угол, можно найти все его тригонометрические функции по специальным таблицам. А зная синусы, косинусы и тангенсы углов треугольника и одну из его сторон, можно найти остальные.

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота