Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
1)Сумма внутренних углов в выпуклом многоугольнике равна 180(n-2). В нашем случае сумма внутренних углов должна быть равна 100*n ( n - количество углов); 100n=180(n-2); 180n-100n=360; 80n=360; n=4,5; получается не целое количество углов (сторон); ответ: не существует 2) Можно по другому. Сумма внешних углов в выпуклом многоугольнике всегда равна 360°: 180*n-180(n-2)=360° (180*n - это сумма всех углов: внешних и внутренних; 180(n-2) - это сумма внутренних углов); Внешний - это угол, смежный с внутренним углом 100°. Внешний угол равен 180-100=80°. 360:80=4,5; Получается не целое количество углов. ответ: не существует
Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
ответ: KD=10см.