Ну вообще-то по определению фигуры равны , если они совпадают при наложении. Если треугольники равны, то и все их соответствующие элементы при наложении совпадают. Но раз уж от Вас требуют еще какого-то доказательства, то можно и так: Пусть есть тр-ки АВС и А1 В1 С1 равны. Покажем, например, что биссектриса АН = биссектрисе А1 Н1. Для этого заметим, что треугольники АНВ и А1 Н1 В1 равны по ВТОРОМУ признаку равенства треугольников ( по стороне и двум прилегающим углам). Так же и про остальные биссектрисы.
Но раз уж от Вас требуют еще какого-то доказательства, то можно и так:
Пусть есть тр-ки АВС и А1 В1 С1 равны.
Покажем, например, что биссектриса АН = биссектрисе А1 Н1.
Для этого заметим, что треугольники АНВ и А1 Н1 В1 равны по ВТОРОМУ признаку равенства треугольников ( по стороне и двум прилегающим углам).
Так же и про остальные биссектрисы.
"О" у нас будет центр окружности с радиусом R
"о" у нас будет центр окружности с радиусом r
берём где угодно ставим точку о, от неё например вправо проводи отрезок оО , который равен расстоянию между центрами окружности=d
второй шаг: выставляем на циркуле R, ставим его в точку О и чертим окружность
выставляем на циркуле r, ставим его в точку о и чертим окружность
третий шаг: смотрим и отвечаем
1) окружности будут пересекаться
2) окружности будут пересекаться
3) окружности не будут касаться друг друга