У прямокутній системі координат ху на площині задано рівнобедрений трикутник AСB, у якому АС = ВС, А(2; –5), В(4; 3). Навколо цього трикутника описано коло, задане рівнянням (x – 3)2 + y2 + 2y = 16. Визначте площу трикутника АВС.
Диагональ трапеции делит ее на два треугольника. Отрезки средней линии трапеции являются средними линиями треугольников (см. рисунок) По определению средней линии ее длина равна половине длины параллельного ей основания. Следовательно, длины оснований трапеции равны: 1,5 х 2 = 3 7,5 х 2 = 15
Площадь трапеции равна произведению полусуммы оснований на высоту: S = (a+b)h/2 Отсюда высота трапеции: h = 2S/(a+b) = 2 x 72 / (15+3) = 8
Так как трапеция является равнобедренной, углы при ее основаниях попарно равны. Высоты, проведенные от верхнего основания к нижнему, делят нижнее основание на три отрезка: 6 + 3 + 6 = 15 (см.рисунок) Длину боковой стороны найдем по теореме Пифагора из образовавшегося прямоугольного треугольника (боковая сторона - гипотенуза, катеты - высота и часть нижнего основания) √8²+6² = √100 = 10
1) Якщо трикутника ABC і FDK , то їх відповідні елементи теж рівні:
AB = FD, BC = DK, CA = KF
∠A = ∠F, ∠B = ∠D, ∠C = ∠K
Відповідно, якщо відрізок AC = 6 см, то відповідний йому відрізок — KF — теж рівний 6 см.
Якщо кут С = 60°, то відповідний йому кут — K — теж рівний 60°.
2) ∠AOB = ∠DOC — так як вертикальні
ВО = ОС, AO = OD — за умовою
Маємо трикутники АОВ та DOC, у яких рівні дві сторони та кут між ними. А це перша ознака рівності трикутників.
Отже, ΔАОВ = ΔDOC
У рівних трикутників рівні і відповідні елементи:
AO = DO, BO = CO, AB = DC
Отже, AB = DC як відповідні еленти у ріних трикутниках.
3) Позначимо одну із сторін трикутника за х (см), тоді другу за х−6 (см), а третю – за х+10 (см). Периметр трикутника рівний 70. Складемо і розв'яжемо рівняння:
x+x−6+x+10 = 70
3x+4 = 70
3x = 66
x = 22
x = 22 см — довжина однієї сторони трикутника
х−6 = 22−6 = 16 см — довжина другої сторони трикутника
х+10 = 22+10 = 32 см — довжина третьої сторони трикутника
Відповідь: Довжини сторін трикутника рівні 16, 22 та 32 см.
По определению средней линии ее длина равна половине длины параллельного ей основания.
Следовательно, длины оснований трапеции равны:
1,5 х 2 = 3
7,5 х 2 = 15
Площадь трапеции равна произведению полусуммы оснований на высоту: S = (a+b)h/2
Отсюда высота трапеции: h = 2S/(a+b) = 2 x 72 / (15+3) = 8
Так как трапеция является равнобедренной, углы при ее основаниях попарно равны. Высоты, проведенные от верхнего основания к нижнему, делят нижнее основание на три отрезка: 6 + 3 + 6 = 15 (см.рисунок)
Длину боковой стороны найдем по теореме Пифагора из образовавшегося прямоугольного треугольника (боковая сторона - гипотенуза, катеты - высота и часть нижнего основания)
√8²+6² = √100 = 10
1) Якщо трикутника ABC і FDK , то їх відповідні елементи теж рівні:
AB = FD, BC = DK, CA = KF
∠A = ∠F, ∠B = ∠D, ∠C = ∠K
Відповідно, якщо відрізок AC = 6 см, то відповідний йому відрізок — KF — теж рівний 6 см.
Якщо кут С = 60°, то відповідний йому кут — K — теж рівний 60°.
2) ∠AOB = ∠DOC — так як вертикальні
ВО = ОС, AO = OD — за умовою
Маємо трикутники АОВ та DOC, у яких рівні дві сторони та кут між ними. А це перша ознака рівності трикутників.
Отже, ΔАОВ = ΔDOC
У рівних трикутників рівні і відповідні елементи:
AO = DO, BO = CO, AB = DC
Отже, AB = DC як відповідні еленти у ріних трикутниках.
3) Позначимо одну із сторін трикутника за х (см), тоді другу за х−6 (см), а третю – за х+10 (см). Периметр трикутника рівний 70. Складемо і розв'яжемо рівняння:
x+x−6+x+10 = 70
3x+4 = 70
3x = 66
x = 22
x = 22 см — довжина однієї сторони трикутника
х−6 = 22−6 = 16 см — довжина другої сторони трикутника
х+10 = 22+10 = 32 см — довжина третьої сторони трикутника
Відповідь: Довжини сторін трикутника рівні 16, 22 та 32 см.
Объяснение: