Из треугольников ABC, ACD соответственно по теор синусов
CAB=a
CAD=b
BC/sina=AC/sin(a+2b)
CD/sinb=AC/sin(2b+a)
но BC=CD , тогда
sina/sin(a+2b) = sinb/sin(b+2a)
sina*sin(b+2a) - sinb*sin(a+2b) = 0
cos(a-b-2a)-cos(b+3a) - cos(b-a-2b)+cos(a+3b)=0
cos(a+3b)=cos(b+3a)
a+3b=b+3a
2b=2a
a=b
CAB=CAD
2)
Пусть AECF точка O пересечения диагоналей и OE=OF рассмотрим симметрию относительно точки O, точка Е перейдет в точку F, точка B в точку D по определению симметрии так как CB=CD точка А перейдет в себя, тогда AB=AD тогда треугольники ABC=ACD откуда
Два решения
1)
Из треугольников ABC, ACD соответственно по теор синусов
CAB=a
CAD=b
BC/sina=AC/sin(a+2b)
CD/sinb=AC/sin(2b+a)
но BC=CD , тогда
sina/sin(a+2b) = sinb/sin(b+2a)
sina*sin(b+2a) - sinb*sin(a+2b) = 0
cos(a-b-2a)-cos(b+3a) - cos(b-a-2b)+cos(a+3b)=0
cos(a+3b)=cos(b+3a)
a+3b=b+3a
2b=2a
a=b
CAB=CAD
2)
Пусть AECF точка O пересечения диагоналей и OE=OF рассмотрим симметрию относительно точки O, точка Е перейдет в точку F, точка B в точку D по определению симметрии так как CB=CD точка А перейдет в себя, тогда AB=AD тогда треугольники ABC=ACD откуда
180-2a-b=180-2b-a
3a=3b
a=b
Дан равнобедренный треугольник ABC, где СA = CB , А(1; -2; 1), В(3; 2; -3), точка С лежит на оси ординат. Найти стороны треугольника ABC .
ответ: |AB| = 6 ; |CA| = |CB| =3√2 ;
Объяснение: C ∈ Oy ⇒ C(0 ; y; 0)
|AB| =√ ( (3 -1)² + (2 -(-2) ) ²+( -3 -1)² ) =√ ( 4 + 16+16 ) = 6 ;
CA² = (1 - 0)²+( -2 -y)² + (1 - 0)² = 1 +( 2 +y)² + 1 = y²+4y+6
CB² = (3 - 0)²+( 2 -y)² + (-3 - 0)² =y² -4y+22 , но CA² = CB² ⇒
y²+4y+6 = y² - 4y+22 ⇔ 8y = 16 ⇒ y = 2
C(0 ; 2; 0)
|CA| =|√ ( y²+4y+6 ) =√ ( 2²+4*2*+6 ) = 3√2
* * * |CB| = √ ( y²-4y+22 ) = √ ( 2²-4*2+22 ) = 3√2 * * *