Для начало нужно определить через какие точки проходит эта прямая 2x+y-6=02x+y−6=0 . для этого выразим "y" затем приравняем левую часть к 0 для того что бы найти точки пересечения с осью ох \begin{lgathered}y=6-2x\\ 6-2x=0\\ x=3\\\end{lgathered}y=6−2x6−2x=0x=3 , а точка пересечения с осью оу =6 , я так понял что точки пересечения по осям а и b даны как 6 и 2 , тогда координата точки "а" так и останется , а координату точки b нужно определить , так как она лежит на этой прямой подставим значение \begin{lgathered}2x+2-6=0\\ x=2\end{lgathered}2x+2−6=0x=2 на рисунке видно ! теперь можно найти конечно уравнение oa для того чтобы найти уравнение аd , но можно поступить так очевидно что точка d будет координата (0; 2) . если вам надо доказательство то нужно решить уравнение пусть координаты точки d(x; y)(x; y)тогда по теореме пифагора каждую сторону выразить получим систему \left \{ {{x^2+(6-y)^2+(x-2)^2+(y-2)^2=20} \atop {(x-2)^2+(y-2)^2+x^2+y^2=8}} \right.{(x−2)2+(y−2)2+x2+y2=8x2+(6−y)2+(x−2)2+(y−2)2=20 решая получим точку d(0; 2) теперь легко найти уравнение ad , по формуле \frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}x2−x1x−x1=y2−y1y−y1 получим y=2 то есть уравнение ad равна это прямая параллельна оси ох
Дан треугольник АВС, высота ВД=8 см, АД=15 см, ДС=6 см.
Сторона АС = 15 + 6 = 21 см.
Отсюда находим площадь треугольника.
S = (1/2)ah = (1/2)*21*8 = 84 см².
Теперь используем формулы радиуса.
Радиус r вписанной окружности равен отношению площади треугольника к его полупериметру.
Находим неизвестные стороны.
АВ = √(15² + 8²) = √(225 + 64) = √289 = 17 см.
ВС = √(6² + 8²) = √(36 + 64) = √100 = 10 см.
Полупериметр р = (17 + 10 + 21)/2 = 48/2 = 24 см.
Находим: r = S/p = 84/24 = 3,5 см.
Радиус R описанной окружности равен:
R = abc/(4S) = 17*10*21/(4*84) = 10,625 см.