BH = 7см, как перпендикуляр к прямой CD.
ΔBHC - прямоугольный (∠BHC=90°), а ∠HCB=30°, поэтому BC=2·BH=7см·2=14см т.к. BH - катет лежащий напротив угла в 30°.
AD = BC = 14см, как противоположные стороны параллелограмма.
Так же AB = DC = (P-AD-BC):2 = (60-14-14):2 = 30-14 = 16см
∠BAD = ∠BCD = 30°, как противоположный углы параллелограмма.
Так же ∠ABC = ∠ADC = (360°-∠BAD-∠BCD):2 = (360°-30°-30°):2 = 180°-30° = 150°.
AB = 16см; BC = 14см; DC = 16см; AD = 14см;
∠BAD = 30°; ∠ABC = 150°; ∠BCD = 30°; ∠ADC = 150°.
Найти:
А) длину отрезка AB:
|АВ| = √((-5-3)²+(6+4)²+(0-2)²) = √(64+100+4) = √168 = 2√42 ≈ 12,96148.
Б) координаты средины отрезка АВ (пусть это точка С):
С = ((3-5)/2=-1; (-4+6)/2=1; (2+0)/2=1) = (-1; 1; 1).
В) точку оси Оx (пусть это точка М), равноудаленную от точек А и В.
Обозначим координаты точки М(x, y, z).
По заданию Мy = 0, Мz = 0, АМ² = ВМ².
АМ² = (х-3)²+(0-(-4))²+(0-2)² = х²-6х+9+16+4 = х²-6х+29.
ВМ² = (х+5)²+(0-6)²+(0-0)² = х²+10х+25+36+0 = х²+10х+61.
Приравняем: х²-6х+29 = х²+10х+61.
16х = -32.
х = -32/16 = -2.
ответ: точка М(-2; 0; 0).
BH = 7см, как перпендикуляр к прямой CD.
ΔBHC - прямоугольный (∠BHC=90°), а ∠HCB=30°, поэтому BC=2·BH=7см·2=14см т.к. BH - катет лежащий напротив угла в 30°.
AD = BC = 14см, как противоположные стороны параллелограмма.
Так же AB = DC = (P-AD-BC):2 = (60-14-14):2 = 30-14 = 16см
∠BAD = ∠BCD = 30°, как противоположный углы параллелограмма.
Так же ∠ABC = ∠ADC = (360°-∠BAD-∠BCD):2 = (360°-30°-30°):2 = 180°-30° = 150°.
AB = 16см; BC = 14см; DC = 16см; AD = 14см;
∠BAD = 30°; ∠ABC = 150°; ∠BCD = 30°; ∠ADC = 150°.