1. 1) у тебя дан равнобедренный треугольник, так как обе стороны равны. 2) высота делит его на два прямоугольных треугольника. а ещё она делит основу на пополам // два равных отрезка. 3) берёшь любой из этой пары и находишь неизвестный катет по небезизвестной теореме пифагора: квадрат гипотенузы равняется суме квадратов катетов. 4)отсюда находишь катет этот алгоритм пригодится, если нужно найти высоту проведённую к основе. а в остальном не знаю 2. можно поступить хитростью: найди периметр и площадь основного, а затем умнож их на 1/4. так ты найдёшь параметры треугольника, подобного данному. (я не уверен, что так можно, но попробуй). предлагаю другой способ, если что: попробуй найти 1/4 каждой стороны, а затем найти площадь и периметр треугольника с новонайденными сторонами, таким образом найдёшь вышеупомянутые параметры подобного треугольника,т.е. тоже самое
Рассмотрим треугольник АВС. Он равнобедренный по условию, так как боковые стороны у него равны. Значит, углы при основании тоже равны - по свойству равнобедренного треугольника.
Так как по условию треугольник АВС ещё и прямоугольный, то сумма его острых углов даёт 90° - по свойству прямоугольного треугольника.
Найдем углы при основании:
BAC = ACB = 90° : 2 = 45°.
Далее рассмотрим углы АСВ и ЕСD - они вертикальные, значит АСВ = ЕСD = 45°.
Так как треугольник СЕD по условию тоже равнобедренный (боковые стороны у него равны по условию), то углы при основании равны. Отсюда находим угол СЕD, он же угол х:
Рассмотрим треугольник АВС. Он равнобедренный по условию, так как боковые стороны у него равны. Значит, углы при основании тоже равны - по свойству равнобедренного треугольника.
Так как по условию треугольник АВС ещё и прямоугольный, то сумма его острых углов даёт 90° - по свойству прямоугольного треугольника.
Найдем углы при основании:
BAC = ACB = 90° : 2 = 45°.
Далее рассмотрим углы АСВ и ЕСD - они вертикальные, значит АСВ = ЕСD = 45°.
Так как треугольник СЕD по условию тоже равнобедренный (боковые стороны у него равны по условию), то углы при основании равны. Отсюда находим угол СЕD, он же угол х:
(180° - угол ЕСD) : 2
(180° - 45°) : 2 = 67,5° - угол х.