так как углы BAC и DCA равны по условию, то можно доказать что прямые параллельны следуя из DC AD секущая АС накрест лежащие углы. Следуя из того что AB=BC BA=DC можно доказать что фигура параллелограмм (потому что они и равны и параллельны) Следовательно из свойств параллелограмма можно доказать что угол B=D потому что в параллелограмме противоположенные углы (по диагонали) равны. Надеюсь понятно объяснил, но в решении могут присутствовать темы которые вы возможно еще не проходили!
У колі з радіусами АО і ОВ пряма а проходить через середини радіусів так, що ОЕ = ОА/4. Оскільки відстань - це перпендикуляр, маємо прямокутний трикутник КОЕ та РОЕ. З прямокутного трикутника КОЕ: ОК = ОА/2, ОЕ = ОА/4. Тобто, катет ОЕ у два рази менший за гіпотенузу ОК. Катет, що дорівнює половині гіпотенузи, лежить проти кута 30 градусів. Тобто, кут ОКЕ = 30 градусів. Кут КОЕ = 90 - 30 = 60 градусів. Трикутники КОЕ та РОЕ рівні за прямим кутом та гіпотенузою, тобто кути КОЕ та РОЕ рівні і дорівнюють по 60 градусів. Кут АОВ = <KOE + <POE = 60 + 60 = 120 градусів.
Объяснение:
Докажем что BC параллельно AD
так как углы BAC и DCA равны по условию, то можно доказать что прямые параллельны следуя из DC AD секущая АС накрест лежащие углы. Следуя из того что AB=BC BA=DC можно доказать что фигура параллелограмм (потому что они и равны и параллельны) Следовательно из свойств параллелограмма можно доказать что угол B=D потому что в параллелограмме противоположенные углы (по диагонали) равны. Надеюсь понятно объяснил, но в решении могут присутствовать темы которые вы возможно еще не проходили!