Все задачи изображены на рисунке в приложении. 1) Координаты вектора MN(7-4; -9-5) = MN(3;-4) - ОТВЕТ. 2) Длина вектора по теореме Пифагора R = √(3²+4²) = √25 = 5 - ОТВЕТ 3) Координаты середины отрезка - среднее арифметическое координат концов отрезка. Сх= (-10 + (-2)/2 = -6 Су= (5 + 1)/2 = 3 и окончательно С(-6;3) - ОТВЕТ 4) Находим вектор АВ(-8;4) и по теореме Пифагора длину отрезка AB = √(8²+4²) = √80 =√16*5 = 4√5 - ОТВЕТ 5) Координаты точки D - середины отрезка АС. Dx = (4-2)/2 = 1 Dy = (-3 +1)/2 = -1 Окончательно координаты точки D(1;-1) - ОТВЕТ
1) Координаты вектора MN(7-4; -9-5) = MN(3;-4) - ОТВЕТ.
2) Длина вектора по теореме Пифагора
R = √(3²+4²) = √25 = 5 - ОТВЕТ
3) Координаты середины отрезка - среднее арифметическое координат концов отрезка.
Сх= (-10 + (-2)/2 = -6
Су= (5 + 1)/2 = 3 и окончательно
С(-6;3) - ОТВЕТ
4) Находим вектор АВ(-8;4) и по теореме Пифагора длину отрезка
AB = √(8²+4²) = √80 =√16*5 = 4√5 - ОТВЕТ
5) Координаты точки D - середины отрезка АС.
Dx = (4-2)/2 = 1
Dy = (-3 +1)/2 = -1
Окончательно координаты точки
D(1;-1) - ОТВЕТ
28
Объяснение:
Тк МК параллельна ВС и она явл средней линией треуг, то она равна половине ВС, т.е МК = 5
Периметр акм = сумме всех сторон этого треугольника, а тк одна из сторон 5, то сумма АК и АМ равна 13.
ТК МК сред линия, то АК=КВ и АМ=МС, тут уже не важно чему равно АМ и АК, ответ будет одинаковый в любом случае. Периметр кбсм равен 18+10 =28
Объяснение :
периметр кбсм равен МК +КВ +МС + ВС
но, мы уже выяснили, что АК=КВ и МС = АМ. Тогда можно записать так периметр кбсм равен МК+АК+АМ+ВС
ВС это 10
Сумма МК, АК, АМ это как раз таки периметр маленького треугольника =18
Вот откуда 18+10