По условию АМ=МС ВС на 2 мм больше АВ Значит, Р(ΔАВМ) меньше Р(ΔВСМ) на 2 мм ответ.Р(ΔВСМ)=16+ 2=18 мм 2) Р(ΔАВD)=АВ+ВD+АD Р(ΔВDC)=ВС+ВD+DС
По условию периметры отличаются на 5 см. Поскольку ВD общая и в том и в другом периметрах, то разница может быть за счет двух оставшихся сторон. 1)Либо АВ+AD больше BC +CD на 5 см 2) либо АВ+AD меньше BC +CD на 5 см
Так как АВ+AD =28 cм, то 1) BC +CD =28 + 5=33 см 2)BC +CD =28 - 5=23 см
ответ. 1) Р(ΔАВС)=АВ+AD+DC+BC=28+33=61 см 2)Р(ΔАВС)=АВ+AD+DC+BC=28+23=51 см
Назовем трапецию ABCD, а высоту ВН. Проведем еще одну высоту из ∠С: СМ Рассмотрим ΔАВН и ΔMCD: AB=CD(по опр. равнобедренной трапеции) ∠ВНА=∠CMD=90(по опр. высоты) ∠А=∠D(по св-ву равнобедренной трапеции) ВН=СМ(так как ВС параллельно AD⇒расстояние между ними всегда одинаковое, а оно измеряется посредством высот) ∠АВН=∠МСD(так как ∠В=∠С(по опр. равноб. трап.), а ∠НВС=∠МСВ=90(как накрест лежащие углы при параллельных прямых ⇒ ∠В - ∠НВС=∠С - ∠МСВ) ⇒ΔАВН = ΔMCD(по двум сторонам и углу между ними) ⇒АН=МD(как соответственные элементы в равных Δ)⇒АН=МD=6 Найдем основания: AD=30+6=36 ВС=36-(6+6)=24 (Другими словами, мы из АD вычли отрезки MD и АН)
Р(ΔВСМ)=ВС+ВМ+МС
По условию
АМ=МС
ВС на 2 мм больше АВ
Значит, Р(ΔАВМ) меньше Р(ΔВСМ) на 2 мм
ответ.Р(ΔВСМ)=16+ 2=18 мм
2) Р(ΔАВD)=АВ+ВD+АD
Р(ΔВDC)=ВС+ВD+DС
По условию периметры отличаются на 5 см.
Поскольку ВD общая и в том и в другом периметрах, то разница может быть за счет двух оставшихся сторон.
1)Либо АВ+AD больше BC +CD на 5 см
2) либо АВ+AD меньше BC +CD на 5 см
Так как АВ+AD =28 cм, то
1) BC +CD =28 + 5=33 см
2)BC +CD =28 - 5=23 см
ответ. 1) Р(ΔАВС)=АВ+AD+DC+BC=28+33=61 см
2)Р(ΔАВС)=АВ+AD+DC+BC=28+23=51 см
Рассмотрим ΔАВН и ΔMCD:
AB=CD(по опр. равнобедренной трапеции)
∠ВНА=∠CMD=90(по опр. высоты)
∠А=∠D(по св-ву равнобедренной трапеции)
ВН=СМ(так как ВС параллельно AD⇒расстояние между ними всегда одинаковое, а оно измеряется посредством высот)
∠АВН=∠МСD(так как ∠В=∠С(по опр. равноб. трап.), а ∠НВС=∠МСВ=90(как накрест лежащие углы при параллельных прямых ⇒ ∠В - ∠НВС=∠С - ∠МСВ)
⇒ΔАВН = ΔMCD(по двум сторонам и углу между ними)
⇒АН=МD(как соответственные элементы в равных Δ)⇒АН=МD=6
Найдем основания:
AD=30+6=36
ВС=36-(6+6)=24 (Другими словами, мы из АD вычли отрезки MD и АН)