Упирамиды все углы, образованные боковыми рёбрами и высотой пирамиды, равны. известно, что её основанием является прямоугольный треугольник. куда проектируется вершина данной пирамиды? 1)в точку пересечения высот 2)в середину большей стороны 3)это зависит от данных величин 4)в точку пересечения биссектрис
Подставим значения тангенсов углов : tg60 = √3, tg45 = 1.
tg γ = 1/√((1/3)+1) = √3/2 ≈ 0,866025.
Высота параллелепипеда равна длине L бокового ребра, умноженного на синус угла его наклона.
Синус угла можно выразить через тангенс:
sin γ = tg γ /(1 + tg²γ) = √3/(2√1 + (3/4)) = √3/√7.
Н = L*sin γ = 7*√3/√7 = 7* 0,654654 = 4,582576 см.
Площадь основания равна So = 2*3 = 6 см².
Объём равен V =So*H = 6* 4,582576 = 27,49545 см³.
Дано: S₁=2√3 см² (площадь квадрата вписанной в окружность ).
S = S(Δ) -?
S =pr = (3a/2)*r , где a длина стороны правильного треугольника , r - радиус вписанной в треугольник окружности: r = a√3/ 6 ⇒
a =6r /√3 = (2√3) *r . Значит S = (3*2√3 / 2)*r² = (3√3)*r² . С другой стороны по условию площадь квадрата вписанной в окружность S₁= ( 2 r*2r)/2 = 2r² ⇒ r² = S₁/2. * * *или по другому S₁=b² =(r√2)² =2r² * * *
Следовательно : S = (3√3)*r² = (3√3)*S₁/2=(3√3)*2√3/2 = 9 (см² ) .
ответ : 9 см² .