Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то такие треугольники подобны. Значит треугольники ВОС и АОD подобны, так как ВО/OD=CO/OA=1/3, а <BOC=<AOD как вертикальные. Из подобия треугольников следует, что <DAO=<BCO как углы против соответственных сторон подобных треугольников. А эти углы - накрест лежащие при прямых ВС и AD и секущей АС. Значит ВС параллельна АD и четырехугольник АВСD - трапеция. б) Площади подобных треугольников относятся как квадрат коэффициента подобия. Коэффициент подобия равен ВО/ОD=6/18=1/3, значит Saod/Sboc=1/9.
б) Площади подобных треугольников относятся как квадрат коэффициента подобия. Коэффициент подобия равен
ВО/ОD=6/18=1/3, значит Saod/Sboc=1/9.
ВЕ = 0,5АВ
АС = 12 дм См. рис. Так как АВС - равнобедренный, то: АЕ = ЕС = 6 дм
------------------ Так как ВЕ = 0,5АВ, то:
Найти: АВ - ? АВ² = ВЕ²+АЕ² = 0,25АВ² + 6²
АВ² - 0,25АВ² = 36
0,75AB² = 36
AB = √48
AB = 4√3 (дм)
Проверим:
(4√3)² = (2√3)²+6²
48 = 12+36
48 = 48
ответ: 4√3 дм