4. одна сторона х, другая х+12, полупериметр 64/2=32, отсюда уравнение. х+х+12=32, х=20/2=10, одна сторона 10 см, другая 32-10=22/см/.
ответ 10см и 22 см
52. Меньшая диагональ лежит против угла в 60°, значит, треугольник, образованный меньшей диагональю и двумя сторонами ромба, равны между собой, т.к. два других угла в этом треугольнике тоже 60°, и он получается правильным, тогда меньшая диагональ равна длине стороны ромба 80/4=20/см/, т.к. все стороны ромба равны между собой.
ответ 20см
6. Рассмотрим треугольник, составленный из диагонали, меньшей и большей сторон прямоугольника. Меньшая сторона лежит против угла в 90°-60°=30° и равна половине гипотенузы, которой является диагональ прямоугольника, значит, меньшая сторона равна 4/2=2/см/
ответ 2см
7. одна. меньшая сторона х, большая х+7, полупериметр 54/2=27, тогда х+х+7=27, х=20/2=10, одна сторона 10 см, другая 10+7=17/см/
ответ 10 см и 17 см
8. /единственная задача, в которой есть именованные величины, но заранее прощения за невозможность поставить рисунок, у меня не работает вложение, в которое можно отправить рис./, поэтому убедительная нарисовать самостоятельно рис. я рассказываю, как. Берете вершину А, проводите АЕ, Е лежит на ВС, а дальше все легко. если обозначим ЕС за х, то ВЕ=3х, Но т.к. биссектриса прямого угла делит его на два угла по 45°, то в треугольнике АВЕ углы А и Е по 45°, значит, ВЕ=АВ=3х, тогда сторона ВС=х+3х=4х. т.е. две стороны в прямоугольнике по 3х, и две по 4х, отсюда уравнение
2*(3х+4х)=42; х=42/14=3 одна сторона 3*3=9/ см/, другая , смежная ей 4*3=12/см/
ответ 9см, 12 см
9. Расстояние между противоположными сторонами - высота ромба. Значит, в треугольнике, образованном высотой, стороной и проекцией стороны на другую сторону, один угол 90°, а тот, что лежит против высоты в 15 см, равен 30°, т.к. высота в 2 раза меньше стороны ромба в30см/ это гипотенуза в указанном треугольнике/. Т.о., углы ромба - острые по 30°, тупые по 180°-30°=150°, большая диагональ лежит против 150°, значит, у треугольников, на которые эта диагональ делит ромб, такие углы:150°; и два угла по (180°-150°)/2=15°, или попроще, диагональ является биссектрисой внутренних углов, поэтому опять таки 30°/2=15°- это острые углы указанных треугольников.
Дано: А(-1;2) , B(5:-6), C(6;4) Найти: CD Решение: 1) Т.к. CD - медиана, то точка D будет серединой отрезка AB , поскольку из вершины С к стороне AB идёт отрезок, делящий её пополам. => AD=DB 2) Обозначим на координатной плоскости точки A,B,C с их координатами и соединим их отрезками. 3) найдём длину AB и поделки её пополам, чтобы найти середину отрезка и обозначим точку D AB = √((5+1)^2 + (-8)^2) = √(36+64) = √100 = 10 D имеет координаты по X суммы B(x) + A(x) , делённое на два и Y суммы B(y) + A(y) , делённое на два. Получается D X= (5-1)/2 ; Y= (-6+2)/2 => D(2;-2) 4) CD = √((6-2)^2 + (4+2)^2) = √(16+36) = √52 = √4*13 = 2√13 ответ: 2√13
К этому решению также приведен чертеж на фотографии.
4. одна сторона х, другая х+12, полупериметр 64/2=32, отсюда уравнение. х+х+12=32, х=20/2=10, одна сторона 10 см, другая 32-10=22/см/.
ответ 10см и 22 см
52. Меньшая диагональ лежит против угла в 60°, значит, треугольник, образованный меньшей диагональю и двумя сторонами ромба, равны между собой, т.к. два других угла в этом треугольнике тоже 60°, и он получается правильным, тогда меньшая диагональ равна длине стороны ромба 80/4=20/см/, т.к. все стороны ромба равны между собой.
ответ 20см
6. Рассмотрим треугольник, составленный из диагонали, меньшей и большей сторон прямоугольника. Меньшая сторона лежит против угла в 90°-60°=30° и равна половине гипотенузы, которой является диагональ прямоугольника, значит, меньшая сторона равна 4/2=2/см/
ответ 2см
7. одна. меньшая сторона х, большая х+7, полупериметр 54/2=27, тогда х+х+7=27, х=20/2=10, одна сторона 10 см, другая 10+7=17/см/
ответ 10 см и 17 см
8. /единственная задача, в которой есть именованные величины, но заранее прощения за невозможность поставить рисунок, у меня не работает вложение, в которое можно отправить рис./, поэтому убедительная нарисовать самостоятельно рис. я рассказываю, как. Берете вершину А, проводите АЕ, Е лежит на ВС, а дальше все легко. если обозначим ЕС за х, то ВЕ=3х, Но т.к. биссектриса прямого угла делит его на два угла по 45°, то в треугольнике АВЕ углы А и Е по 45°, значит, ВЕ=АВ=3х, тогда сторона ВС=х+3х=4х. т.е. две стороны в прямоугольнике по 3х, и две по 4х, отсюда уравнение
2*(3х+4х)=42; х=42/14=3 одна сторона 3*3=9/ см/, другая , смежная ей 4*3=12/см/
ответ 9см, 12 см
9. Расстояние между противоположными сторонами - высота ромба. Значит, в треугольнике, образованном высотой, стороной и проекцией стороны на другую сторону, один угол 90°, а тот, что лежит против высоты в 15 см, равен 30°, т.к. высота в 2 раза меньше стороны ромба в30см/ это гипотенуза в указанном треугольнике/. Т.о., углы ромба - острые по 30°, тупые по 180°-30°=150°, большая диагональ лежит против 150°, значит, у треугольников, на которые эта диагональ делит ромб, такие углы:150°; и два угла по (180°-150°)/2=15°, или попроще, диагональ является биссектрисой внутренних углов, поэтому опять таки 30°/2=15°- это острые углы указанных треугольников.
ответ 150°, 15°,15°
А(-1;2) , B(5:-6), C(6;4)
Найти: CD
Решение:
1) Т.к. CD - медиана, то точка D будет серединой отрезка AB , поскольку из вершины С к стороне AB идёт отрезок, делящий её пополам. => AD=DB
2) Обозначим на координатной плоскости точки A,B,C с их координатами и соединим их отрезками.
3) найдём длину AB и поделки её пополам, чтобы найти середину отрезка и обозначим точку D
AB = √((5+1)^2 + (-8)^2) = √(36+64) = √100 = 10
D имеет координаты по X суммы B(x) + A(x) , делённое на два и Y суммы B(y) + A(y) , делённое на два. Получается D X= (5-1)/2 ; Y= (-6+2)/2 => D(2;-2)
4) CD = √((6-2)^2 + (4+2)^2) = √(16+36) = √52 = √4*13 = 2√13
ответ: 2√13
К этому решению также приведен чертеж на фотографии.